Calculus Assignment: Proving Integral Convergence/Divergence
VerifiedAdded on 2023/01/23
|10
|1170
|22
Homework Assignment
AI Summary
This calculus assignment delves into the analysis of integral convergence and divergence. The student provides detailed solutions to prove whether various improper integrals converge or diverge. The assignment utilizes techniques such as integration by parts and limit evaluation to determine the be...

1
Calculus
Student’s Name:
University Affiliation:
Calculus
Student’s Name:
University Affiliation:
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

2
Part a
If f(x)=|f(x)|
Then a ≤ f ( x ) ≤ b∨x ≥ 1
Now let us determine whether f(x) converges or not
∫
1
∞
f ( x ) dx=¿ lim
b → ∞
∫
1
b
f ( x ) dx ¿
¿ lim
b → ∞
¿
¿ lim
b → ∞ [ f ( b )a+1
a+1 ]−[ f ( 1 )a +1
a+ 1 ]
¿ lim
b → ∞ [ −f ( 1 ) a +1
a+1 ] +[ f ( b ) a +1
a+1 ]
¿ [ 1
a+1 ]
Therefore, |f(x)| diverge since P<1
Part b
Prove that ∫
1
∞
cosx
x2 dx converges .
Solution
Using integration by parts
∫u v' dx=uv −∫ u' vdx
Part a
If f(x)=|f(x)|
Then a ≤ f ( x ) ≤ b∨x ≥ 1
Now let us determine whether f(x) converges or not
∫
1
∞
f ( x ) dx=¿ lim
b → ∞
∫
1
b
f ( x ) dx ¿
¿ lim
b → ∞
¿
¿ lim
b → ∞ [ f ( b )a+1
a+1 ]−[ f ( 1 )a +1
a+ 1 ]
¿ lim
b → ∞ [ −f ( 1 ) a +1
a+1 ] +[ f ( b ) a +1
a+1 ]
¿ [ 1
a+1 ]
Therefore, |f(x)| diverge since P<1
Part b
Prove that ∫
1
∞
cosx
x2 dx converges .
Solution
Using integration by parts
∫u v' dx=uv −∫ u' vdx

3
Where u= 1
x2 , v'=∫ cosxdx ,u'=−2
x3 , v=sinx
∫ −2
x3 ∗cosxdx = sinx
x2 +2∫ sinx
x3 dx
Introducing limits
∫
1
∞
cosx
x2 =lim
b → ∞
∫
1
b
cosx
x3 dx
¿ lim
b → ∞
¿
¿ lim
b → ∞ {[ sin ( b )
( b )3 ]− [ sin ( 1 )
( 1 )3 ] }+ lim
b → ∞
2∫
1
b
sinx
x3 dx
¿ lim
b → ∞
[ 0 ]−sin [ 1 ] +lim
b →∞
2∫
1
b
sinx
x3 dx
From the equation above, lim
b → ∞
2∫
1
b
sinx
x3 dx ≤ lim
b →∞
2∫
1
b
¿ sinx∨ ¿
x3 dx ¿
The absolute value |sin x| when graphed produces a positive graph
with 1 maximum and 0 minimum.
Considering the highest value: 1, it becomes
≤ lim
b →∞
2∫
1
b
1
x3 dx which converges.
Therefore, the ∫
1
∞
cosx
x2 dx converge .
Part c
Where u= 1
x2 , v'=∫ cosxdx ,u'=−2
x3 , v=sinx
∫ −2
x3 ∗cosxdx = sinx
x2 +2∫ sinx
x3 dx
Introducing limits
∫
1
∞
cosx
x2 =lim
b → ∞
∫
1
b
cosx
x3 dx
¿ lim
b → ∞
¿
¿ lim
b → ∞ {[ sin ( b )
( b )3 ]− [ sin ( 1 )
( 1 )3 ] }+ lim
b → ∞
2∫
1
b
sinx
x3 dx
¿ lim
b → ∞
[ 0 ]−sin [ 1 ] +lim
b →∞
2∫
1
b
sinx
x3 dx
From the equation above, lim
b → ∞
2∫
1
b
sinx
x3 dx ≤ lim
b →∞
2∫
1
b
¿ sinx∨ ¿
x3 dx ¿
The absolute value |sin x| when graphed produces a positive graph
with 1 maximum and 0 minimum.
Considering the highest value: 1, it becomes
≤ lim
b →∞
2∫
1
b
1
x3 dx which converges.
Therefore, the ∫
1
∞
cosx
x2 dx converge .
Part c
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

4
Prove that ∫
1
∞
sinx
x dx converges .
Solution
We will use integration by parts which is stated as:
∫u v' dx=uv −∫ u' vdx
Let u= 1
x , v'=sinxdx , v=−cosx
∫ 1
x . sinxdx= [ 1
x ∗( −cosx ) ] −∫ 1/ x2 (cosx) dx
¿ [ −cosx
x ]−∫(cosx )/ x2 dx
Introducing the limits
∫
1
∞
sinx
x dx= lim
n→ ∞
∫
1
n
sinx
x dx
¿ lim
n → ∞ ([−cosx
x2 ) ] b
1−∫
1
n
cosx
x2 dx ¿
¿ lim
n → ∞
{
([ −cos (n)
(n)2 ) ] +¿
lim
n → ∞
( 0 ) +cos ( 1 ) −lim
n →∞
∫
1
n
cosx
x2 dx
Prove that ∫
1
∞
sinx
x dx converges .
Solution
We will use integration by parts which is stated as:
∫u v' dx=uv −∫ u' vdx
Let u= 1
x , v'=sinxdx , v=−cosx
∫ 1
x . sinxdx= [ 1
x ∗( −cosx ) ] −∫ 1/ x2 (cosx) dx
¿ [ −cosx
x ]−∫(cosx )/ x2 dx
Introducing the limits
∫
1
∞
sinx
x dx= lim
n→ ∞
∫
1
n
sinx
x dx
¿ lim
n → ∞ ([−cosx
x2 ) ] b
1−∫
1
n
cosx
x2 dx ¿
¿ lim
n → ∞
{
([ −cos (n)
(n)2 ) ] +¿
lim
n → ∞
( 0 ) +cos ( 1 ) −lim
n →∞
∫
1
n
cosx
x2 dx
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

5
Now taking lim
n → ∞
∫
1
n
cosx
x2 dxand testing, we will find that
lim
n → ∞
∫
1
n
cosx
x2 dx ≤ lim
n → ∞
∫
1
n
¿ cosx ∨ ¿
x2 dx ¿
And the absolute values of |cos x| ranges between 0 and 1.
Taking the highest value i.e. 1, it will become
≤ lim
n →∞
∫
1
n
1
x2 dx which converges.
Since, lim
n → ∞
∫
1
n
cosx
x2 dx ≤ lim
n → ∞
∫
1
n
¿ cosx∨ ¿
x2 dx ¿ , hence ∫
1
∞
sinx
x dx converges .
Part d
Prove that ∫
1
∞
1−cos 2 x
x dx di verges .
Hint: Split the expression inside the integral into two parts.
Solution.
∫
1
∞
1−cos 2 x
x dx =∫
1
∞
1
x dx−∫
1
∞
cos 2 x
x dx
The second part of the equation would be solved using integration by
parts ∫u v' dx=uv −∫ u' vdx
u= 1
x , u' = 1
x2 , v'=∫cos 2 x dx , v =sin 2 x
2
Now taking lim
n → ∞
∫
1
n
cosx
x2 dxand testing, we will find that
lim
n → ∞
∫
1
n
cosx
x2 dx ≤ lim
n → ∞
∫
1
n
¿ cosx ∨ ¿
x2 dx ¿
And the absolute values of |cos x| ranges between 0 and 1.
Taking the highest value i.e. 1, it will become
≤ lim
n →∞
∫
1
n
1
x2 dx which converges.
Since, lim
n → ∞
∫
1
n
cosx
x2 dx ≤ lim
n → ∞
∫
1
n
¿ cosx∨ ¿
x2 dx ¿ , hence ∫
1
∞
sinx
x dx converges .
Part d
Prove that ∫
1
∞
1−cos 2 x
x dx di verges .
Hint: Split the expression inside the integral into two parts.
Solution.
∫
1
∞
1−cos 2 x
x dx =∫
1
∞
1
x dx−∫
1
∞
cos 2 x
x dx
The second part of the equation would be solved using integration by
parts ∫u v' dx=uv −∫ u' vdx
u= 1
x , u' = 1
x2 , v'=∫cos 2 x dx , v =sin 2 x
2

6
∫
1
∞
1−cos 2 x
x = [ −1
x2 ] −{( sin 2 x
2 x )−∫ sin 2 x
2 x2 dx }
Let us introduce limits
∫
1
∞
1−cos 2 x
x =lim
b → ∞
∫
1
b
1
x dx−lim
b → ∞
∫
1
b
cos 2 x
x dx
¿ [−1
x2 ]−{( sin 2 x
2 x )−∫ sin 2 x
2 x2 dx }
¿ lim
b → ∞ [−1
x2 ] b
1−{lim
b → ∞
( sin 2 x
2 x )
b
1− lim
b →∞ ∫
1
b
sin 2 x
2 x2
dx }
¿ lim
b → ∞
[ 0 ] −1−lim
b →∞
[ 0 ] −sin [ 2 ] −lim
b → ∞
∫
1
b
sin2 x
2 x2 dx
Now takin
lim
b → ∞
∫
1
b
sin2 x
2 x2 dx∧testing , we will find that lim
b → ∞
∫
1
b
sin2 x
2 x2 dx ≥ lim
b → ∞
∫
1
b
¿ sin 2 x∨ ¿
2 x2 dx ¿
The absolute |sin 2x| ranges between 0 and 2.5
Taking the largest value, we will obtain
≥ lim
b →∞
∫
1
b
5
4 x2 dx
Hence ∫
1
∞
1−cos 2 x
x dx diverges .
∫
1
∞
1−cos 2 x
x = [ −1
x2 ] −{( sin 2 x
2 x )−∫ sin 2 x
2 x2 dx }
Let us introduce limits
∫
1
∞
1−cos 2 x
x =lim
b → ∞
∫
1
b
1
x dx−lim
b → ∞
∫
1
b
cos 2 x
x dx
¿ [−1
x2 ]−{( sin 2 x
2 x )−∫ sin 2 x
2 x2 dx }
¿ lim
b → ∞ [−1
x2 ] b
1−{lim
b → ∞
( sin 2 x
2 x )
b
1− lim
b →∞ ∫
1
b
sin 2 x
2 x2
dx }
¿ lim
b → ∞
[ 0 ] −1−lim
b →∞
[ 0 ] −sin [ 2 ] −lim
b → ∞
∫
1
b
sin2 x
2 x2 dx
Now takin
lim
b → ∞
∫
1
b
sin2 x
2 x2 dx∧testing , we will find that lim
b → ∞
∫
1
b
sin2 x
2 x2 dx ≥ lim
b → ∞
∫
1
b
¿ sin 2 x∨ ¿
2 x2 dx ¿
The absolute |sin 2x| ranges between 0 and 2.5
Taking the largest value, we will obtain
≥ lim
b →∞
∫
1
b
5
4 x2 dx
Hence ∫
1
∞
1−cos 2 x
x dx diverges .
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

7
Part e
Prove that ∫
1
∞
¿ sinx
x ∨¿ dx converges . ¿
Hint: Use the fact that |sin x| ≤ Sin2 x ∀ ϵR
Solutions.
When dealing with absolute values, we would only consider positive
values.
We use integration by parts to obtain or solutions
∫u v' dx=uv −∫ u' vdx
∫ 1
x . sinxdx=[ cox
x ¿ ]−∫ cosx
x2 dx ¿
We now introduce our limits
∫
1
∞
¿ sinx
x ∨¿=lim
b →∞
∫
1
b
sinx
x2 dx ¿
Solving the above we obtain
¿ lim
b → ∞
¿
¿ lim
b → ∞
( [ cos ( b )
b2 ] + cos ( 1 )
1 )−∫
1
b
cosx
x2 dx
Part e
Prove that ∫
1
∞
¿ sinx
x ∨¿ dx converges . ¿
Hint: Use the fact that |sin x| ≤ Sin2 x ∀ ϵR
Solutions.
When dealing with absolute values, we would only consider positive
values.
We use integration by parts to obtain or solutions
∫u v' dx=uv −∫ u' vdx
∫ 1
x . sinxdx=[ cox
x ¿ ]−∫ cosx
x2 dx ¿
We now introduce our limits
∫
1
∞
¿ sinx
x ∨¿=lim
b →∞
∫
1
b
sinx
x2 dx ¿
Solving the above we obtain
¿ lim
b → ∞
¿
¿ lim
b → ∞
( [ cos ( b )
b2 ] + cos ( 1 )
1 )−∫
1
b
cosx
x2 dx
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

8
¿ lim
b → ∞
( 0 ) 1 lim
b →∞
cos ( 1 ) −∫
1
b
cosx
x2 dx
We now test ∫
1
b
cosx
x2 dx ¿ know the lowest values are 0∧thehighest values areinfinite .
∫
1
b
cosx
x2 dx>∫
1
b
¿ cosx
x2 ∨dx
Hence, ∫
1
∞
¿ sinx
x ∨¿ dx converge ¿
¿ lim
b → ∞
( 0 ) 1 lim
b →∞
cos ( 1 ) −∫
1
b
cosx
x2 dx
We now test ∫
1
b
cosx
x2 dx ¿ know the lowest values are 0∧thehighest values areinfinite .
∫
1
b
cosx
x2 dx>∫
1
b
¿ cosx
x2 ∨dx
Hence, ∫
1
∞
¿ sinx
x ∨¿ dx converge ¿

9
References
Grosser, D. (2014). Improper Integrals.
Lay, D. (2012). Linear Algebra and Its Applications. University of Mary Land.
References
Grosser, D. (2014). Improper Integrals.
Lay, D. (2012). Linear Algebra and Its Applications. University of Mary Land.
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

10
1 out of 10
Related Documents

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.