University Complex Analysis Homework on Series and Functions

Verified

Added on  2023/01/13

|5
|1148
|23
Homework Assignment
AI Summary
Document Page
1)b)
d
dz ln z= 1
z = 1
a+(z a)=1
a ( az
a )
n
a=1+2i
ln z= 1
a ( az
a )
n
dz=¿ 1
n ( az
a )
n
+ln a ¿
Radius of convergence:
Ratio test or root test will both give you the same thing.
|az|<|a|=¿ R<|a|=¿ R< 5
a)
1
za(1a)= 1
(a1) ( za
a1 )n
a=1+2i
For convergence, we can say that,
¿ za ¿
¿ a1¿<1 ¿ ¿
R<|a1|=|1+2 i1|=|2i|=2=¿ R<2
c)
z2 1
z3 1 = z +1
z2 +z+ 1
About z = 2
Therefore, z=w+2
w+3
w2 +5 w+7 = w+3
( w+ 5+ i 3
2 )( w+ 5i 3
2 )
¿ A
5+i 3
2
( w
5+ i 3
2 )n
+ B
5i 3
2
( w
5i 3
2 )n
|( w
5+i 3
2 )|<1
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
|w|<| 5 ±i 3
2 |= 7
Therefore the radius of convergence is 7
2)
1
z3 z
z3
Let z=w+1
1
w2 w+1
w2= w
w2
¿ w
2 ( 1
1 w
2 )
¿ w
2
n=0

( w
2 )n
¿
p=0

( w
2 )p
where p=n+1
|w
2 |<1=¿|w|<2
Radius of convergence is |z1|<2
3)a)
ln z= 1
a ( az
a )
n
dz=¿ 1
n ( az
a )
n
+ln a ¿
a=i2
b)
|( az
a )|< 1
|za|<|a|=|i2|= 5
c)
If a = -2,
Document Page
Thenln a does not .
4)
f ' ( x ) =lim
h 0
f ( x+ h ) f (x)
h
f ' ( x ) =lim
h 0
e
1
(x+h)2
e
1
(x)2
h
Expanding,
e
1
( x+h)2
=1 1
(x+ h)2 + 1
(x +h)4
e
1
( x)2
=1 1
( x )2 + 1
(x )4
e
1
( x+h)2
e
1
( x ) 2
= ( 2 x+ h ) h
( x +h ) 2 ( x ) 2 + some higher order terms of h
f ' ( x )=lim
h 0
( 2 x+ h ) h
( x+ h )2 ( x )2 + some higher order terms of h
h
f ' ( x ) = ( 2 x )
( x ) 2 ( x ) 2 ( 1 1
( x ) 2 + 1
( x ) 4 )
f ' ( x )= 2
x3 (1 1
( x )2 + 1
( x )4 )= 2
x3 e
1
( x)2
Therefore
f ' ( x )= 2
x3 e
1
(x)2
At x = 0, putting x = 0 in f ' ( x ) ,
e
1
( x)2
0 as x 0
So we can write it as,
f ' ( 0 ) = 2
x3 e
1
( x ) 2
=0
Document Page
b)
With the help of induction we can show that higher order derivatives are also zero so,
f ' ( 0 )=f ' ' ( 0 )=f '' ' ( 0 )==0
Now if we find the Taylor series of f ( x) at 0,
f ( 0+ h ) =f ( 0 ) +h f ' ( 0 ) + h2
2 f ' ' ( 0 ) + h3
6 f ' ' ' ( 0 ) +
Putting the values of the derivatives we get,
f ( 0+ h )=0
c)
lim
h 0
f ( 0+h ) f ( 0 ) =lim
h 0
e
1
h2
As h is imaginary so h2 will give a negative value so it will become -h2
lim
h 0
e
1
h2
= f ( 0 )
Therefore it is not continuous proved.
d)
e
1
z2
=1+1
z2 + 1
2 ! z4 + 1
3 ! z6 +
¿
n=0
(1)n
n !(z2 )n =
n=0
1
n ! ( 1
z2 )
n
It is valid in the domain of |z| > 0
5)
1
z2 5 z +6 = 1
( z3 ) ( z2 ) = 1
z3 1
z2
If |Z|> 3
1
z3 = 1
z ( 1
13 z1 )=1
z
n =0

( 3
z )n
=
n=0
3n
zn +1
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Similarly,
1
z2 =1
z ( 1
12 z1 )= 1
z
n=0

( 2
z )
n
=
n=0
2n
zn+1
Therefore Laurent series becomes,
1
( z3 ) ( z2 ) =
n=0
3n
zn+1
n=0
2n
zn +1 =
n=0
1
zn +1 ( 3n 2n )
If 2 < |Z| < 3
1
z2 =1
z ( 1
12 z1 )= 1
z
n=0

(2
z )n
=
n=0
2n
zn+1
1
z3 =1
3 ( 1
1 z
3 )=1
3
n=0

( z
3 )
n
=
n=0
zn
3n+1
Therefore Laurent series becomes,
1
( z3 ) ( z2 ) =
n=0
zn
3n +1
n=0
2n
zn +1
If |Z| < 2
1
z3 =1
3 ( 1
1 z
3 )=1
3
n=0

( z
3 )n
=
n=0
zn
3n+1
1
z2 =1
2 ( 1
1 z
2 )=1
2
n=0

( z
2 )n
=
n=0
zn
2n +1
Therefore Laurent series becomes,
1
( z3 ) ( z2 ) =
n=0
zn
3n +1 +
n=0
zn
2n +1
chevron_up_icon
1 out of 5
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]