University Complex Analysis Homework on Series and Functions
VerifiedAdded on 2023/01/13
|5
|1148
|23
Homework Assignment
AI Summary
This document presents solutions to a complex analysis homework assignment. The solutions cover several key areas, including determining the radius of convergence for series, specifically using the ratio test. The assignment involves the manipulation and analysis of complex functions, including fi...

1)b)
d
dz ln z= 1
z = 1
a+(z −a)=1
a ∑ ( a−z
a )
n
a=1+2i
ln z=∫ 1
a ∑ ( a−z
a )
n
dz=¿ ∑ 1
n ( a−z
a )
n
+ln a ¿
Radius of convergence:
Ratio test or root test will both give you the same thing.
|a−z|<|a|=¿ R<|a|=¿ R< √ 5
a)
1
z−a−(1−a)= 1
(a−1) ∑ ( z−a
a−1 )n
a=1+2i
For convergence, we can say that,
¿ z−a∨ ¿
¿ a−1∨¿<1 ¿ ¿
R<|a−1|=|1+2 i−1|=|2i|=2=¿ R<2
c)
z2 −1
z3 −1 = z +1
z2 +z+ 1
About z = 2
Therefore, z=w+2
w+3
w2 +5 w+7 = w+3
( w+ 5+ i √ 3
2 )( w+ 5−i √ 3
2 )
¿ A
5+i √3
2
∑ ( w
5+ i √3
2 )n
+ B
5−i √3
2
∑ ( w
5−i √3
2 )n
|( w
5+i √3
2 )|<1
d
dz ln z= 1
z = 1
a+(z −a)=1
a ∑ ( a−z
a )
n
a=1+2i
ln z=∫ 1
a ∑ ( a−z
a )
n
dz=¿ ∑ 1
n ( a−z
a )
n
+ln a ¿
Radius of convergence:
Ratio test or root test will both give you the same thing.
|a−z|<|a|=¿ R<|a|=¿ R< √ 5
a)
1
z−a−(1−a)= 1
(a−1) ∑ ( z−a
a−1 )n
a=1+2i
For convergence, we can say that,
¿ z−a∨ ¿
¿ a−1∨¿<1 ¿ ¿
R<|a−1|=|1+2 i−1|=|2i|=2=¿ R<2
c)
z2 −1
z3 −1 = z +1
z2 +z+ 1
About z = 2
Therefore, z=w+2
w+3
w2 +5 w+7 = w+3
( w+ 5+ i √ 3
2 )( w+ 5−i √ 3
2 )
¿ A
5+i √3
2
∑ ( w
5+ i √3
2 )n
+ B
5−i √3
2
∑ ( w
5−i √3
2 )n
|( w
5+i √3
2 )|<1
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

|w|<| 5 ±i √ 3
2 |= √ 7
Therefore the radius of convergence is √7
2)
1
z−3 − z
z−3
Let z=w+1
1
w−2 − w+1
w−2= −w
w−2
¿ w
2 ( 1
1− w
2 )
¿ w
2 ∑
n=0
∞
( w
2 )n
¿ ∑
p=0
∞
( w
2 )p
where p=n+1
|w
2 |<1=¿|w|<2
Radius of convergence is |z−1|<2
3)a)
ln z=∫ 1
a ∑ ( a−z
a )
n
dz=¿ ∑ 1
n ( a−z
a )
n
+ln a ¿
a=i−2
b)
|( a−z
a )|< 1
|z−a|<|a|=|i−2|= √5
c)
If a = -2,
2 |= √ 7
Therefore the radius of convergence is √7
2)
1
z−3 − z
z−3
Let z=w+1
1
w−2 − w+1
w−2= −w
w−2
¿ w
2 ( 1
1− w
2 )
¿ w
2 ∑
n=0
∞
( w
2 )n
¿ ∑
p=0
∞
( w
2 )p
where p=n+1
|w
2 |<1=¿|w|<2
Radius of convergence is |z−1|<2
3)a)
ln z=∫ 1
a ∑ ( a−z
a )
n
dz=¿ ∑ 1
n ( a−z
a )
n
+ln a ¿
a=i−2
b)
|( a−z
a )|< 1
|z−a|<|a|=|i−2|= √5
c)
If a = -2,

Thenln a does not ∃.
4)
f ' ( x ) =lim
h →0
f ( x+ h ) −f (x)
h
f ' ( x ) =lim
h →0
e
−1
(x+h)2
−e
−1
(x)2
h
Expanding,
e
−1
( x+h)2
=1− 1
(x+ h)2 + 1
(x +h)4 −…
e
−1
( x)2
=1− 1
( x )2 + 1
(x )4 −…
e
−1
( x+h)2
−e
−1
( x ) 2
= ( 2 x+ h ) h
( x +h ) 2 ( x ) 2 + … some higher order terms of h
f ' ( x )=lim
h →0
( 2 x+ h ) h
( x+ h )2 ( x )2 + … some higher order terms of h
h
f ' ( x ) = ( 2 x )
( x ) 2 ( x ) 2 ( 1− 1
( x ) 2 + 1
( x ) 4 −… )
f ' ( x )= 2
x3 (1− 1
( x )2 + 1
( x )4 −… )= 2
x3 e
−1
( x)2
Therefore
f ' ( x )= 2
x3 e
−1
(x)2
At x = 0, putting x = 0 in f ' ( x ) ,
e
−1
( x)2
→ 0 as x → 0
So we can write it as,
f ' ( 0 ) = 2
x3 e
−1
( x ) 2
=0
4)
f ' ( x ) =lim
h →0
f ( x+ h ) −f (x)
h
f ' ( x ) =lim
h →0
e
−1
(x+h)2
−e
−1
(x)2
h
Expanding,
e
−1
( x+h)2
=1− 1
(x+ h)2 + 1
(x +h)4 −…
e
−1
( x)2
=1− 1
( x )2 + 1
(x )4 −…
e
−1
( x+h)2
−e
−1
( x ) 2
= ( 2 x+ h ) h
( x +h ) 2 ( x ) 2 + … some higher order terms of h
f ' ( x )=lim
h →0
( 2 x+ h ) h
( x+ h )2 ( x )2 + … some higher order terms of h
h
f ' ( x ) = ( 2 x )
( x ) 2 ( x ) 2 ( 1− 1
( x ) 2 + 1
( x ) 4 −… )
f ' ( x )= 2
x3 (1− 1
( x )2 + 1
( x )4 −… )= 2
x3 e
−1
( x)2
Therefore
f ' ( x )= 2
x3 e
−1
(x)2
At x = 0, putting x = 0 in f ' ( x ) ,
e
−1
( x)2
→ 0 as x → 0
So we can write it as,
f ' ( 0 ) = 2
x3 e
−1
( x ) 2
=0
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

b)
With the help of induction we can show that higher order derivatives are also zero so,
f ' ( 0 )=f ' ' ( 0 )=f '' ' ( 0 )=…=0
Now if we find the Taylor series of f ( x) at 0,
f ( 0+ h ) =f ( 0 ) +h f ' ( 0 ) + h2
2 f ' ' ( 0 ) + h3
6 f ' ' ' ( 0 ) + …
Putting the values of the derivatives we get,
f ( 0+ h )=0
c)
lim
h→ 0
f ( 0+h ) −f ( 0 ) =lim
h→ 0
e
−1
h2
As h is imaginary so h2 will give a negative value so it will become -h2
lim
h→ 0
e
1
h2
=∞ ≠ f ( 0 )
Therefore it is not continuous proved.
d)
e
−1
z2
=1+−1
z2 + 1
2 ! z4 + −1
3 ! z6 + …
¿ ∑
n=0
∞ (−1)n
n !(z2 )n =∑
n=0
∞ 1
n ! ( −1
z2 )
n
It is valid in the domain of |z| > 0
5)
1
z2 −5 z +6 = 1
( z−3 ) ( z−2 ) = 1
z−3 − 1
z−2
If |Z|> 3
1
z−3 = 1
z ( 1
1−3 z−1 )=1
z ∑
n =0
∞
( 3
z )n
=∑
n=0
∞ 3n
zn +1
With the help of induction we can show that higher order derivatives are also zero so,
f ' ( 0 )=f ' ' ( 0 )=f '' ' ( 0 )=…=0
Now if we find the Taylor series of f ( x) at 0,
f ( 0+ h ) =f ( 0 ) +h f ' ( 0 ) + h2
2 f ' ' ( 0 ) + h3
6 f ' ' ' ( 0 ) + …
Putting the values of the derivatives we get,
f ( 0+ h )=0
c)
lim
h→ 0
f ( 0+h ) −f ( 0 ) =lim
h→ 0
e
−1
h2
As h is imaginary so h2 will give a negative value so it will become -h2
lim
h→ 0
e
1
h2
=∞ ≠ f ( 0 )
Therefore it is not continuous proved.
d)
e
−1
z2
=1+−1
z2 + 1
2 ! z4 + −1
3 ! z6 + …
¿ ∑
n=0
∞ (−1)n
n !(z2 )n =∑
n=0
∞ 1
n ! ( −1
z2 )
n
It is valid in the domain of |z| > 0
5)
1
z2 −5 z +6 = 1
( z−3 ) ( z−2 ) = 1
z−3 − 1
z−2
If |Z|> 3
1
z−3 = 1
z ( 1
1−3 z−1 )=1
z ∑
n =0
∞
( 3
z )n
=∑
n=0
∞ 3n
zn +1
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

Similarly,
1
z−2 =1
z ( 1
1−2 z−1 )= 1
z ∑
n=0
∞
( 2
z )
n
=∑
n=0
∞ 2n
zn+1
Therefore Laurent series becomes,
1
( z−3 ) ( z−2 ) =∑
n=0
∞ 3n
zn+1 −∑
n=0
∞ 2n
zn +1 =∑
n=0
∞ 1
zn +1 ( 3n −2n )
If 2 < |Z| < 3
1
z−2 =1
z ( 1
1−2 z−1 )= 1
z ∑
n=0
∞
(2
z )n
=∑
n=0
∞ 2n
zn+1
1
z−3 =−1
3 ( 1
1− z
3 )=−1
3 ∑
n=0
∞
( z
3 )
n
=∑
n=0
∞ −zn
3n+1
Therefore Laurent series becomes,
1
( z−3 ) ( z−2 ) =∑
n=0
∞ −zn
3n +1 −∑
n=0
∞ 2n
zn +1
If |Z| < 2
1
z−3 =−1
3 ( 1
1− z
3 )=−1
3 ∑
n=0
∞
( z
3 )n
=∑
n=0
∞ −zn
3n+1
1
z−2 =−1
2 ( 1
1− z
2 )=−1
2 ∑
n=0
∞
( z
2 )n
=∑
n=0
∞ −zn
2n +1
Therefore Laurent series becomes,
1
( z−3 ) ( z−2 ) =∑
n=0
∞ −zn
3n +1 +∑
n=0
∞ −zn
2n +1
1
z−2 =1
z ( 1
1−2 z−1 )= 1
z ∑
n=0
∞
( 2
z )
n
=∑
n=0
∞ 2n
zn+1
Therefore Laurent series becomes,
1
( z−3 ) ( z−2 ) =∑
n=0
∞ 3n
zn+1 −∑
n=0
∞ 2n
zn +1 =∑
n=0
∞ 1
zn +1 ( 3n −2n )
If 2 < |Z| < 3
1
z−2 =1
z ( 1
1−2 z−1 )= 1
z ∑
n=0
∞
(2
z )n
=∑
n=0
∞ 2n
zn+1
1
z−3 =−1
3 ( 1
1− z
3 )=−1
3 ∑
n=0
∞
( z
3 )
n
=∑
n=0
∞ −zn
3n+1
Therefore Laurent series becomes,
1
( z−3 ) ( z−2 ) =∑
n=0
∞ −zn
3n +1 −∑
n=0
∞ 2n
zn +1
If |Z| < 2
1
z−3 =−1
3 ( 1
1− z
3 )=−1
3 ∑
n=0
∞
( z
3 )n
=∑
n=0
∞ −zn
3n+1
1
z−2 =−1
2 ( 1
1− z
2 )=−1
2 ∑
n=0
∞
( z
2 )n
=∑
n=0
∞ −zn
2n +1
Therefore Laurent series becomes,
1
( z−3 ) ( z−2 ) =∑
n=0
∞ −zn
3n +1 +∑
n=0
∞ −zn
2n +1
1 out of 5
Related Documents

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.