ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Laurent Series Expansion

Verified

Added on  2023/01/13

|5
|1148
|23
AI Summary
This document explains the concept of Laurent series expansion in complex analysis. It covers the conditions for convergence and the radius of convergence. Solved examples and practice problems are provided for better understanding.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
1)b)
d
dz ln z= 1
z = 1
a+(z a)=1
a ( az
a )
n
a=1+2i
ln z= 1
a ( az
a )
n
dz=¿ 1
n ( az
a )
n
+ln a ¿
Radius of convergence:
Ratio test or root test will both give you the same thing.
|az|<|a|=¿ R<|a|=¿ R< 5
a)
1
za(1a)= 1
(a1) ( za
a1 )n
a=1+2i
For convergence, we can say that,
¿ za ¿
¿ a1¿<1 ¿ ¿
R<|a1|=|1+2 i1|=|2i|=2=¿ R<2
c)
z2 1
z3 1 = z +1
z2 +z+ 1
About z = 2
Therefore, z=w+2
w+3
w2 +5 w+7 = w+3
( w+ 5+ i 3
2 )( w+ 5i 3
2 )
¿ A
5+i 3
2
( w
5+ i 3
2 )n
+ B
5i 3
2
( w
5i 3
2 )n
|( w
5+i 3
2 )|<1

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
|w|<| 5 ±i 3
2 |= 7
Therefore the radius of convergence is 7
2)
1
z3 z
z3
Let z=w+1
1
w2 w+1
w2= w
w2
¿ w
2 ( 1
1 w
2 )
¿ w
2
n=0

( w
2 )n
¿
p=0

( w
2 )p
where p=n+1
|w
2 |<1=¿|w|<2
Radius of convergence is |z1|<2
3)a)
ln z= 1
a ( az
a )
n
dz=¿ 1
n ( az
a )
n
+ln a ¿
a=i2
b)
|( az
a )|< 1
|za|<|a|=|i2|= 5
c)
If a = -2,
Document Page
Thenln a does not .
4)
f ' ( x ) =lim
h 0
f ( x+ h ) f (x)
h
f ' ( x ) =lim
h 0
e
1
(x+h)2
e
1
(x)2
h
Expanding,
e
1
( x+h)2
=1 1
(x+ h)2 + 1
(x +h)4
e
1
( x)2
=1 1
( x )2 + 1
(x )4
e
1
( x+h)2
e
1
( x ) 2
= ( 2 x+ h ) h
( x +h ) 2 ( x ) 2 + some higher order terms of h
f ' ( x )=lim
h 0
( 2 x+ h ) h
( x+ h )2 ( x )2 + some higher order terms of h
h
f ' ( x ) = ( 2 x )
( x ) 2 ( x ) 2 ( 1 1
( x ) 2 + 1
( x ) 4 )
f ' ( x )= 2
x3 (1 1
( x )2 + 1
( x )4 )= 2
x3 e
1
( x)2
Therefore
f ' ( x )= 2
x3 e
1
(x)2
At x = 0, putting x = 0 in f ' ( x ) ,
e
1
( x)2
0 as x 0
So we can write it as,
f ' ( 0 ) = 2
x3 e
1
( x ) 2
=0
Document Page
b)
With the help of induction we can show that higher order derivatives are also zero so,
f ' ( 0 )=f ' ' ( 0 )=f '' ' ( 0 )==0
Now if we find the Taylor series of f ( x) at 0,
f ( 0+ h ) =f ( 0 ) +h f ' ( 0 ) + h2
2 f ' ' ( 0 ) + h3
6 f ' ' ' ( 0 ) +
Putting the values of the derivatives we get,
f ( 0+ h )=0
c)
lim
h 0
f ( 0+h ) f ( 0 ) =lim
h 0
e
1
h2
As h is imaginary so h2 will give a negative value so it will become -h2
lim
h 0
e
1
h2
= f ( 0 )
Therefore it is not continuous proved.
d)
e
1
z2
=1+1
z2 + 1
2 ! z4 + 1
3 ! z6 +
¿
n=0
(1)n
n !(z2 )n =
n=0
1
n ! ( 1
z2 )
n
It is valid in the domain of |z| > 0
5)
1
z2 5 z +6 = 1
( z3 ) ( z2 ) = 1
z3 1
z2
If |Z|> 3
1
z3 = 1
z ( 1
13 z1 )=1
z
n =0

( 3
z )n
=
n=0
3n
zn +1

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Similarly,
1
z2 =1
z ( 1
12 z1 )= 1
z
n=0

( 2
z )
n
=
n=0
2n
zn+1
Therefore Laurent series becomes,
1
( z3 ) ( z2 ) =
n=0
3n
zn+1
n=0
2n
zn +1 =
n=0
1
zn +1 ( 3n 2n )
If 2 < |Z| < 3
1
z2 =1
z ( 1
12 z1 )= 1
z
n=0

(2
z )n
=
n=0
2n
zn+1
1
z3 =1
3 ( 1
1 z
3 )=1
3
n=0

( z
3 )
n
=
n=0
zn
3n+1
Therefore Laurent series becomes,
1
( z3 ) ( z2 ) =
n=0
zn
3n +1
n=0
2n
zn +1
If |Z| < 2
1
z3 =1
3 ( 1
1 z
3 )=1
3
n=0

( z
3 )n
=
n=0
zn
3n+1
1
z2 =1
2 ( 1
1 z
2 )=1
2
n=0

( z
2 )n
=
n=0
zn
2n +1
Therefore Laurent series becomes,
1
( z3 ) ( z2 ) =
n=0
zn
3n +1 +
n=0
zn
2n +1
1 out of 5
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]