Solved Assignments and Study Material for Desklib
VerifiedAdded on 2023/04/11
|5
|584
|398
AI Summary
Desklib offers a variety of solved assignments and study material for students. From essays to dissertations, find the resources you need for your academic success.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
4) i)
γ= C p
Cv
γ= 1
0.72 =1.389
Pbottom
1
γ V bottom=Ptop
1
γ V top
V bottom
V top
= 10
1
V bottom
V top
= Ptop
Pbottom
1
γ =¿ Ptop
Pbottom
1
γ =10
Ptop
Pbottom
=101.389=24.49
Pbottom=0.286 MPa
Similarly,
T bottom
1
γ−1 V bottom=T top
1
γ −1 V top
Ttop
Tbottom
1
γ −1 =10
Ttop
Tbottom
=100.389=2.45
T bottom=723.673 K =450.67℃
iii)
∆ U =Cv ∆T
∆ T = ( 450.67−1500 ) ℃=−1049.33 K
Cv=0.72 KJ /kgK
∆ U =0.72 × (−1049.33 ) =−755.515 KJ /kg
ii)
For adiabatic process,
∆ W =−∆U
∆ W =755.515 KJ /kg
iv)
Since it is an adiabatic process heat flow is 0.
γ= C p
Cv
γ= 1
0.72 =1.389
Pbottom
1
γ V bottom=Ptop
1
γ V top
V bottom
V top
= 10
1
V bottom
V top
= Ptop
Pbottom
1
γ =¿ Ptop
Pbottom
1
γ =10
Ptop
Pbottom
=101.389=24.49
Pbottom=0.286 MPa
Similarly,
T bottom
1
γ−1 V bottom=T top
1
γ −1 V top
Ttop
Tbottom
1
γ −1 =10
Ttop
Tbottom
=100.389=2.45
T bottom=723.673 K =450.67℃
iii)
∆ U =Cv ∆T
∆ T = ( 450.67−1500 ) ℃=−1049.33 K
Cv=0.72 KJ /kgK
∆ U =0.72 × (−1049.33 ) =−755.515 KJ /kg
ii)
For adiabatic process,
∆ W =−∆U
∆ W =755.515 KJ /kg
iv)
Since it is an adiabatic process heat flow is 0.
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
5)
PV =mRT
V 1=0.0298
Similarly,
V 2=0.19=V 3
P3 ×V 3=P4 × V 4
220000 ×0.19=1400000× V 4
V 4 =0.0298
a)
First step is adiabatic process,
PV =mRT
V 1=0.0298
Similarly,
V 2=0.19=V 3
P3 ×V 3=P4 × V 4
220000 ×0.19=1400000× V 4
V 4 =0.0298
a)
First step is adiabatic process,
P1
1−γ T 1
γ =P2
1−γ T 2
γ
P1=1400 KN
m2 ,T 1=633 K , P2=100 KN
m2
T 2=14
1−γ
γ ×633
Next step is isochoric process,
T2
P2
= T 3
P3
T 3=633 K , P3 =220 KN
m2
(14 ¿¿ 1−γ
γ ×633)
100 = 633
220 ¿
14
1− γ
γ = 5
11
γ=1.426
b) Putting the value of γ=1.426
In T 2we get the value of T 2=287.727
γ= C p
Cv
=1.004
Cv
=1.426
Cv=0.704 KJ
kgK
Change in internal energy in adiabatic process
∆ U =m× Cv ×(T 2−T1 )
∆ U =−55.912 KJ
7)
a)
Number of cylinder, ncyl = 4;
No. of strokes per cycle for the engine, S = 2;
1−γ T 1
γ =P2
1−γ T 2
γ
P1=1400 KN
m2 ,T 1=633 K , P2=100 KN
m2
T 2=14
1−γ
γ ×633
Next step is isochoric process,
T2
P2
= T 3
P3
T 3=633 K , P3 =220 KN
m2
(14 ¿¿ 1−γ
γ ×633)
100 = 633
220 ¿
14
1− γ
γ = 5
11
γ=1.426
b) Putting the value of γ=1.426
In T 2we get the value of T 2=287.727
γ= C p
Cv
=1.004
Cv
=1.426
Cv=0.704 KJ
kgK
Change in internal energy in adiabatic process
∆ U =m× Cv ×(T 2−T1 )
∆ U =−55.912 KJ
7)
a)
Number of cylinder, ncyl = 4;
No. of strokes per cycle for the engine, S = 2;
Power developed, I.P. = 36 kW;
Engine speed, N = 3000 r.p.m.;
Actual mean effective pressure, Pam = 900 KN/m2 = 9bar
Length of stroke, L = 1.4 D (bore);
No. of missed cycle, nmc = 0
d=¿
d=¿
d=56.66 mm
Length = 1.4 X d = 79.32 mm
b)
Mechanical efficiency = Brake Power/Indicative Power
Brake Power = 0.83 * 36 = 29.88 KW
Brake thermal efficiency= Brake Power
mf × CV
0.29= 29.88
mf × 45800
mf =0.00225
BSFC (brake specific Fuel Consumption) = mf
Brake Power
BSFC= 0.00225
29.88 × 3600=0.000075 ×3600=0.271 g /kWh
8)
Mean effective pressure of cylinder 1 = 10.15 bar
Mean effective pressure of cylinder 2 = 9.98 bar
Mean effective pressure of cylinder 3 = 9.96 bar
Mean effective pressure of cylinder 4 = 9.92 bar
10.0025 bar = Pam
d = 90mm = 0.09m
Engine speed, N = 3000 r.p.m.;
Actual mean effective pressure, Pam = 900 KN/m2 = 9bar
Length of stroke, L = 1.4 D (bore);
No. of missed cycle, nmc = 0
d=¿
d=¿
d=56.66 mm
Length = 1.4 X d = 79.32 mm
b)
Mechanical efficiency = Brake Power/Indicative Power
Brake Power = 0.83 * 36 = 29.88 KW
Brake thermal efficiency= Brake Power
mf × CV
0.29= 29.88
mf × 45800
mf =0.00225
BSFC (brake specific Fuel Consumption) = mf
Brake Power
BSFC= 0.00225
29.88 × 3600=0.000075 ×3600=0.271 g /kWh
8)
Mean effective pressure of cylinder 1 = 10.15 bar
Mean effective pressure of cylinder 2 = 9.98 bar
Mean effective pressure of cylinder 3 = 9.96 bar
Mean effective pressure of cylinder 4 = 9.92 bar
10.0025 bar = Pam
d = 90mm = 0.09m
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
L = 95mm = 0.095m, N = 300 rpm. S = 4, Net Brake Load = 340 N
a)
I . P=
100 ×10.0025 ×0.095 × π
4 ×(0.09 ×0.09)×( 2 ×300
4 )× 4
60
I . P=6.045 KW
Effective brake circumference
b)
Reff =0.46
BP= 2 πNT
1000× 60 = 2 πN Reff (W −S )
1000 ×60 =2 π × 300× 0.46 ×340
60000 =4.913 KW
c)
Mechanical Efficiency = B.P/I.P = 81.28%.
d)
Fuel used per hour (mf )= 20 * 0.74 / 3600 = 4.11 ×10−3kg/sec
Specific fuel consumption = 4.11 × 10−3
4.913 ×3600=¿ 3.002
e)
CV =46500 KJ /kg
Indicated thermal efficiency = I . P
mf ×CV
I . P
mf ×CV = 6.045
4.11× 10−3 × 46500 =0.0316=3.16 %
f)
Brake thermal efficiency= Brake Power
mf × CV
Brake thermal efficiency= 4.913
4.11 ×10−3 × 46500 =0.0257=2.57 %
a)
I . P=
100 ×10.0025 ×0.095 × π
4 ×(0.09 ×0.09)×( 2 ×300
4 )× 4
60
I . P=6.045 KW
Effective brake circumference
b)
Reff =0.46
BP= 2 πNT
1000× 60 = 2 πN Reff (W −S )
1000 ×60 =2 π × 300× 0.46 ×340
60000 =4.913 KW
c)
Mechanical Efficiency = B.P/I.P = 81.28%.
d)
Fuel used per hour (mf )= 20 * 0.74 / 3600 = 4.11 ×10−3kg/sec
Specific fuel consumption = 4.11 × 10−3
4.913 ×3600=¿ 3.002
e)
CV =46500 KJ /kg
Indicated thermal efficiency = I . P
mf ×CV
I . P
mf ×CV = 6.045
4.11× 10−3 × 46500 =0.0316=3.16 %
f)
Brake thermal efficiency= Brake Power
mf × CV
Brake thermal efficiency= 4.913
4.11 ×10−3 × 46500 =0.0257=2.57 %
1 out of 5
Related Documents
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.