logo

Body Tissues and Its Types Assignment

   

Added on  2019-09-16

64 Pages37221 Words676 Views
4.1TYPES OF TISSUESOBJECTIVEName the four basic types of tissues that make up the human body, and state the characteristics of each.Body tissues can be classified into four basic types according to their structure and function (Figure4.1):1.Epithelial tissuescover body surfaces and line hollow organs, body cavities, and ducts; they also formsglands. This tissue allows the body to interact with both its internal and external environments.2.Connective tissuesprotect and support the body and its organs. Various types of connective tissues bind organs together, store energy reserves as fat, and help provide the body with immunity to disease‐causing organisms.3.Muscular tissuesare composed of cells specialized for contraction and generation of force. In the process, muscular tissues generate heat that warms the body.4.Nervous tissuedetects changes in a variety of conditions inside and outside the body and responds by generating electrical signals called nerve action potentials (nerve impulses) that activate muscular contractions and glandular secretions.Figure4.1Types of tissues.Each of the four types of tissues has different cells that vary in shape, structure, function, and distribution.Kevin Somerville/Imagineering; Photo by Mark NielsenWhat are some key differences in function among the four tissue types?
Body Tissues and Its Types Assignment_1
Epithelial tissues and most types of connective tissues, except cartilage, bone, and blood, are more general in nature and have a wide distribution in the body. These tissues are components of most body organs and have a wide range of structure and function. We will look at epithelial tissues and connective tissues in some detail in this chapter. The general features of bone tissue and blood will be introduced here, but their detailed discussionis presented in Chapters6and19, respectively. Similarly, the structure and function of muscular tissues and nervous tissue are introduced here and examined in detail in Chapters10and12, respectively.Normally, most cells within a tissue remain anchored to other cells or structures. Only a few cells, such as phagocytes, move freely through the body, searching for invaders to destroy. However, many cells migrate extensively during the growth and development process before birth.ExamplesAnatomy Overview: Epithelial TissuesAnatomy Overview: Connective TissuesAnatomy Overview: Muscle TissueAnatomy Overview: Nervous TissueCLINICAL CONNECTIONBiopsyAbiopsy(BĪ‐op‐sē;bio‐ = life; ‐opsy= to view) is the removal of a sample of living tissue for microscopic examination. This procedure is used to help diagnose many disorders, especially cancer, andto discover the cause of unexplained infections and inflammations. Both normal and potentially diseased tissues are removed for purposes of comparison. Once the tissue samples are removed, either surgically or through a needle and syringe, they may be preserved, stained to highlight special properties, or cut intothin sections for microscopic observation. Sometimes a biopsy is conducted while a patient is anesthetized during surgery to help a physician determine the most appropriate treatment. For example, ifa biopsy of thyroid tissue reveals malignant cells, the surgeon can proceed immediately with the most appropriate procedure.4.2CELL JUNCTIONSOBJECTIVE
Body Tissues and Its Types Assignment_2
Describe the structure and functions of the five main types of cell junctions.Before looking more specifically at the types of tissues, we will first examine how cells are held together to form tissues. Most epithelial cells and some muscle and nerve cells are tightly joined into functional units.Celljunctionsare contact points between the plasma membranes of tissue cells. Here we consider the five most important types of cell junctions: tight junctions, adherens junctions, desmosomes, hemidesmosomes, and gap junctions (Figure4.2).Figure4.2Cell junctions.Most epithelial cells and some muscle and nerve cells contain cell junctions.Imagineering; Photo by Mark NielsenWhich type of cell junction functions in communication between adjacent cells?Tight JunctionsTight junctionsconsist of weblike strands of transmembrane proteins that fuse together the outer surfaces of adjacent plasma membranes to seal off passageways between adjacent cells (Figure4.2a). Cells of epithelial tissues that line the stomach, intestines, and urinary bladder have many tight junctions. They inhibit the passage of substances between cells and prevent the contents of these organs from leaking into the blood or surrounding tissues.Adherens JunctionsAdherens junctions(ad‐HER‐ens) containplaque(PLAK), a dense layer of proteins on the inside of the plasma membrane that attaches both to membrane proteins and to microfilaments of the cytoskeleton (Figure4.2b). Transmembrane glycoproteins calledcadherinsjoin the cells. Each cadherin inserts into the plaque from the opposite side of the plasma membrane, partially crosses the intercellular space (the space between the cells), and connects to cadherins of an adjacent cell. In epithelial cells, adherens junctions often form extensive zones calledadhesion beltsbecause they encircle the cell similar to the way a belt encircles your waist. Adherens junctions help epithelial surfaces resist separation during various contractile activities, aswhen food moves through the intestines.Desmosomes
Body Tissues and Its Types Assignment_3
Like adherens junctions,desmosomes(DEZ‐mō‐sōms;desmo‐ = band) contain plaque and have transmembrane glycoproteins (cadherins) that extend into the intercellular space between adjacent cell membranes and attach cells to one another (Figure4.2c). However, unlike adherens junctions, the plaque of desmosomes does not attach to microfilaments. Instead, a desmosome plaque attaches to elements of the cytoskeleton known as intermediate filaments, which consist of the protein keratin. The intermediate filaments extend from desmosomes on one side of the cell across the cytosol to desmosomes on the opposite side of the cell. This structural arrangement contributes to the stability of the cells and tissue. These spot‐weld‐like junctions are common among the cells that make up the epidermis (the outermost layer of the skin) and among cardiac muscle cells in the heart. Desmosomes prevent epidermal cells from separating under tension and cardiac muscle cells from pulling apart during contraction.HemidesmosomesHemidesmosomes(hemi‐ = half) resemble desmosomes, but they do not link adjacent cells. The name arises from the fact that they look like half of a desmosome (Figure4.2d). However, the transmembrane glycoproteins in hemidesmosomes areintegrinsrather than cadherins. On the inside of the plasma membrane, integrins attach to intermediate filaments made of the protein keratin. On the outside of the plasma membrane, the integrins attach to the proteinlaminin,which is present in the basement membrane (discussed shortly). Thus, hemidesmosomes anchor cells not to each other but to the basement membrane.Gap JunctionsAtgap junctions, membrane proteins calledconnexinsform tiny fluid‐filled tunnels calledconnexonsthat connect neighboring cells (Figure4.2e). The plasma membranes of gap junctions are not fused together as in tight junctions but are separated by a very narrow intercellular gap (space). Through the connexons, ions and small molecules can diffuse from the cytosol of one cell to another, but the passage of large molecules such as vital intracellular proteins is prevented. The transfer of nutrients, and perhaps wastes, takes place through gap junctions in avascular tissues such as the lens and cornea of the eye. Gap junctions allow the cells in a tissue to communicate with one another. In a developing embryo, some of the chemical and electrical signals that regulate growth and cell differentiation travel via gap junctions. Gap junctions also enable nerve or muscle impulses to spread rapidly among cells, a process that is crucial for the normal operation of some parts of the nervous system and for the contraction of muscle in the heart, gastrointestinal tract, and uterus.4.3COMPARISON BETWEEN EPITHELIAL AND CONNECTIVE TISSUESOBJECTIVEState the main differences between epithelial and connective tissues.
Body Tissues and Its Types Assignment_4
Before examining epithelial tissues and connective tissues in more detail, let's compare these two widely distributed tissues (Figure4.3). Major structural differences between an epithelial tissue and a connective tissue are immediately obvious under a light microscope. The first obvious difference is the number of cells in relation to the extracellular matrix (the substance between cells). In an epithelial tissue many cells are tightly packed together with little or no extracellular matrix, whereas in a connective tissue a large amount of extracellular material separates cells that are usually widely scattered. The second obvious difference is that an epithelial tissue has no blood vessels, whereas most connective tissues have significant networks of blood vessels. Another key difference is that epithelial tissues almost always form surface layers and are not covered by another tissue. An exception is the epithelial lining of blood vessels where blood constantly passes over the epithelium. While these key structural distinctions account for some of the major functional differences between these tissue types, they also lead to a common bond. Because epithelial tissues lack blood vessels and form surfaces, they are always found immediately adjacent to blood‐vessel‐rich connective tissues, which enable them to make the exchanges with blood necessary for the delivery of oxygen and nutrients and the removal of wastes that are critical processes for their survival and function.Figure4.3Comparison between epithelial tissues and connective tissues.The ratio of cells to extracellular matrix is a major difference between epithelial tissues and connective tissues.Photo by Mark NielsenWhat relationship between epithelial tissues and connective tissues is important for the survival and function of epithelial tissues?4.4EPITHELIAL TISSUESOBJECTIVESDescribe the general features of epithelial tissues.List the location, structure, and function of each different type of epithelial tissues.
Body Tissues and Its Types Assignment_5
Anepithelial tissue(ep‐i‐THĒ‐lē‐al) orepithelium(plural isepithelia) consists of cells arranged in continuous sheets, in either single or multiple layers. Because the cells are closely packed and are held tightly together by many cell junctions, there is little intercellular space between adjacent plasma membranes. Epithelial tissues form coverings and linings throughout the body. They are rarely covered by another tissue, so they always have a free surface. Epithelial tissues have three major functions. They serve as (1) selective barriers that limit or aid the transfer of substances into and out of the body; (2) secretory surfaces that release products produced by the cells onto their free surfaces; and (3) protective surfaces that resist the abrasive influences of the environment.The various surfaces of epithelial cells often differ in structure and have specialized functions. Theapical (free) surfaceof an epithelial cell faces the body surface, a body cavity, the lumen (interior space) of an internal organ, or a tubular duct that receives cell secretions (Figure4.4). Apical surfaces may contain cilia or microvilli. Thelateral surfacesof an epithelial cell, which face the adjacent cells on either side, may contain tight junctions, adherens junctions, desmosomes, and/or gap junctions. Thebasal surfaceof an epithelial cell is opposite the apical surface. The basal surfaces of the deepest layer of epithelial cells adhere to extracellular materials such as the basement membrane. Hemidesmosomes in the basal surfaces of the deepest layer of epithelial cells anchor the epithelium to the basement membrane (described next). In discussing epithelia with multiple layers, the termapical layerrefers to the most superficial layer of cells, and thebasal layeris the deepest layer of cells.4.5CONNECTIVE TISSUESOBJECTIVESDescribe the general features of connective tissues.Describe the structure, location, and function of the various types of connective tissues.Connective tissuesare one of the most abundant and widely distributed tissues in the body. In their various forms, connective tissues have a variety of functions. They bind together, support, and strengthen other body tissues; protect and insulate internal organs; compartmentalize structures such as skeletal muscles; serve as the major transport system within the body (blood, a fluid connective tissue); are the primary locations of stored energy reserves (adipose, or fat, tissue); and are the main source of immune responses.ExamplesAnatomy Overview: Connective TissuesGeneral Features of Connective TissuesConnective tissues consist of two basic elements: extracellular matrix and cells. A connective tissue'sextracellular matrix(MĀ‐triks) is the material located between its widely spaced cells. The extracellular matrix consists ofprotein fibersandground substance,the material between the cells and the fibers. The extracellular fibers are secreted by the connective tissue cells and account for many of the functional properties of the tissue in addition to controlling the surrounding watery environment via specific proteoglycan molecules (described shortly). The structure of the extracellular matrix determines much of the tissue's qualities. For instance, in cartilage, the extracellular matrix is firm but pliable. The extracellular matrix of bone, by contrast, is hard and inflexible.Recall that, in contrast to epithelial tissues, connective tissues do not usually occur on body surfaces. Also, unlike epithelial tissues, connective tissues usually are highly vascular; that is, they have a rich blood supply.
Body Tissues and Its Types Assignment_6
Exceptions include cartilage, which is avascular, and tendons, with a scanty blood supply. Except for cartilage,connective tissues, like epithelial tissues, are supplied with nerves.Connective Tissue CellsEmbryonic cells called mesenchymal cells give rise to the cells of connective tissues. Each major type of connective tissue contains an immature class of cells with a name ending in ‐blast,which means “to bud or sprout.” These immature cells are calledfibro blastsin loose and dense connective tissue (described shortly),chondroblastsin cartilage, andosteoblastsin bone. Blast cells retain the capacity for cell division andsecrete the extracellular matrix that is characteristic of the tissue. In cartilage and bone, once the extracellular matrix is produced, the immature cells differentiate into mature cells with names ending in ‐cyte,namely, chondrocytes and osteocytes. Mature cells have reduced capacities for cell division and extracellular matrix formation and are mostly involved in monitoring and maintaining the extracellular matrix.The types of cells in connective tissues vary according to the type of tissue and include the following (Figure4.8):1.Fibroblasts(FĪ‐brō‐blasts;fibro‐ = fibers) are large, flat cells with branching processes. They are present in all the general connective tissues, and usually are the most numerous. Fibroblasts migrate through the connective tissues, secreting the fibers and certain components of the ground substance of the extracellular matrix.2.Macrophages(MAK‐rō‐fā‐jez;macro‐ = large; ‐phages= eaters) develop frommonocytes,a typeof white blood cell. Macrophages have an irregular shape with short branching projections and are capable of engulfing bacteria and cellular debris by phagocytosis.Fixed macrophagesreside in a particular tissue; examples include alveolar macrophages in the lungs or splenic macrophages in the spleen.Wandering macrophageshave the ability to move throughout the tissue and gather at sites of infection or inflammation to carry on phagocytosis.3.Plasma cellsare small cells that develop from a type of white blood cell called aB lymphocyte. Plasma cells secrete antibodies, proteins that attack or neutralize foreign substances in the body. Thus, plasma cells are an important part of the body's immune response. Although they are found in many places in the body, most plasma cells reside in connective tissues, especially in the gastrointestinal and respiratory tracts. They are also abundant in the salivary glands, lymph nodes, spleen, and red bone marrow.4.Mast cellsare abundant alongside the blood vessels that supply connective tissue. They produce histamine, a chemical that dilates small blood vessels as part of the inflammatory response, the body's reaction to injury or infection. In addition, researchers have recently discovered that mast cells can bindto, ingest, and kill bacteria.5.Adipocytes(AD‐i‐pō‐sīts), also called fat cells oradiposecells, are connective tissue cells that storetriglycerides (fats). They are found deep to the skin and around organs such as the heart and kidneys.6.White blood cellsare not found in significant numbers in normal connective tissues. However, in response to certain conditions they migrate from blood into connective tissues. For example,neutrophilsgather at sites of infection, andeosinophilsmigrate to sites of parasitic invasions and allergic responses.Figure4.8Representative cells and fibers present in connective tissues.Fibroblasts are usually the most numerous connective tissue cells.Imagineering; Photo by Mark NielsenWhat is the function of fibroblasts?
Body Tissues and Its Types Assignment_7
Connective Tissue Extracellular MatrixEach type of connective tissue has unique properties, based on the specific extracellular materials between the cells. The extracellular matrix consists of two major components: (1) the ground substance and (2) the fibers.Ground SubstanceAs noted earlier, theground substanceis the component of a connective tissue between the cells and fibers. The ground substance may be fluid, semifluid, gelatinous, or calcified. It supports cells, binds them together, stores water, and provides a medium for exchange of substances between the blood and cells. It plays an activerole in how tissues develop, migrate, proliferate, and change shape, and in how they carry out their metabolic functions.Ground substance contains water and an assortment of large organic molecules, many of which are complex combinations of polysaccharides and proteins. The polysaccharides include hyaluronic acid, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Collectively, they are referred to asglycosaminoglycans(glī‐kōs‐a‐mē′‐nō‐GLĪ‐kans) orGAGs.Except for hyaluronic acid, the GAGs are associated with proteins calledproteoglycans(prō‐tē‐ō‐GLĪ‐kans). The proteoglycans form a core protein and the GAGs project from the protein like the bristles of a brush. One of the most important properties of GAGs is that they trap water, making the ground substance more jellylike.Hyaluronic acid(hī′‐a‐loo‐RON‐ik) is a viscous, slippery substance that binds cells together, lubricates joints, and helps maintain the shape of the eyeballs. White blood cells, sperm cells, and some bacteria producehyaluronidase,an enzyme that breaks apart hyaluronic acid, thus causing the ground substance of connective tissue to become more liquid. The ability to produce hyaluronidase helps white blood cells move more easily through connective tissues to reach sites of infection and aids penetration of an oocyte by a sperm cell during fertilization. It also accounts for the rapid spread of bacteria through connective tissues.Chondroitin sulfate(kon‐DROY‐tin) provides support and adhesiveness in cartilage, bone, skin, and blood vessels. The skin, tendons, blood vessels, and heart valves containdermatan sulfate;bone, cartilage, and the cornea of the eye containkeratan sulfate.Also present in the ground substance areadhesion proteins,which are responsible for linking components of the ground substance to one another and to the surfaces of cells. The main adhesion protein of connective tissues isfibronectin,which binds to both collagen fibers (discussed shortly) and ground substance, linking them together. Fibronectin also attaches cells to the ground substance.CLINICAL CONNECTIONChondroitin Sulfate, Glucosamine, and Joint DiseaseIn recent years,chondroitin sulfateandglucosamine(a proteoglycan) have been used as nutritional supplements either alone or in combination to promote and maintain the structure and function of joint cartilage, to provide pain relief from osteoarthritis, and to reduce joint inflammation. Although these supplements have benefited some individuals with moderate to severe osteoarthritis, the benefit is minimal in lesser cases. More research is needed to determine how they act and why they help some people and not others.FibersThree types offibersare embedded in the extracellular matrix between the cells: collagen fibers, elastic fibers, and reticular fibers (Figure4.8). They function to strengthen and support connective tissues.Collagen fibers(KOL‐a‐jen;colla= glue) are very strong and resist pulling forces (tension), but they are not stiff, which allows tissue flexibility. The properties of different types of collagen fibers vary from tissue to tissue. For example, the collagen fibers found in cartilage and bone form different associations with surrounding molecules. As a result of these associations, the collagen fibers in cartilage are surrounded by more water molecules than those in bone, which gives cartilage a more cushioning effect. Collagen fibers often
Body Tissues and Its Types Assignment_8

End of preview

Want to access all the pages? Upload your documents or become a member.

Related Documents
Zabibu Gahimbare Unit 9: Anatomy and Physiology for Health and Ill-Health
|13
|2306
|495

Anatomy, Physiology and Pharmacology Study Material
|67
|7770
|269

Assignment Anatomy and Physiology
|110
|57241
|88

Circulation Immunity and Homeostasis
|9
|2227
|472

Physiological Principles of Health and Social Care
|14
|4291
|361

Human Psychology Assignment (DOC)
|11
|3109
|131