ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Shear Stress Analysis in Structural Components

Verified

Added on  2019/09/23

|8
|428
|190
Report
AI Summary
The assignment content discusses various problems related to stress and strain in a rod under different conditions. It involves calculating the principal stresses, shear stresses, and yielding at points A and B. Additionally, it also deals with finite element analysis and obtaining accurate results by dividing elements at each mm variation of stress.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Answer (2):
Given data:
d=0.2m
L=1 m
T =20 π
Stress at point (A)
Fx=0
V x20 π =0
Fy=0
V y=20 π
My=0
σ yb= N
A = 20
0.1 π = 200
π =63.66
σ y= M y
I
I = π R4
4 = π ( 0.1 )4
4 =0.25 π x 104 m4
y= 4 R
3 π
σ y= 20 π x 1 x 4 x 0.1
3 π x 0.25 π x 104
¿ 3.395305 x 104
σ y=63.66+33953.05
σ y=34016.71
Find, shear stress
τ y=V y Q
I t
Q= A1 y1
¿ π ( 0.1 ) 2
2 ( 4 R
3 π )
1 | P a g e

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿ π ( 0.1 )2
2 ( 4 x 0.1
3 π )
Q=6.66 x 104
I = π R4
4 = π ( 0.1 ) 4
4 =0.25 π x 104 m4
τ A = 20 π x 6.66 x 104
0.25 π x 104 x 0.2
τ A =2664 kN /m2
Answer (B)
As per given condition if maximum shear stress greater then yield stress then yield occur, but value
of maximum shear stress is lower than yield stress therefore yielding not occur at point “A”
Principal stress at point A,
σ 1,2=( σ x +σ y
2 )± ( σ x +σ y
2 )2
+ ( τxy )2
¿ 34016.71+ 0
2 ± ( 34016.71+0
2 )
2
+ ( 2664 )2
¿ 17008.355 ±34120.327
σ A=51128.682 kN
m2 (Tensile)
σ A=17111.972 kN
m2 (Compressive)
Answer (c)
τ max=± ( σ x +σ y
2 )2
+τxy
2
¿ ( 34016.71+0
2 )2
+26642
¿ 34120.327
¿ 34. 120 Mpa
As per given condition if maximum shear stress greater then yield stress then yield occur, but value
of maximum shear stress is lower than yield stress therefore yielding not occur at point “A”
Calculation for point: B
2 | P a g e
Document Page
Answer (A)
Stress at the point (B)
Fy=0
V y(20 π )=0
My=0 ; Mx20 π ( 1 ) =0
Mx=20 π
Fx=0
V x=0
Fz=0
V Z =0
Shear stress at point B,
τ B= V y Q
I t
I = π R4
4 = π ( 0.1 ) 4
4 =0.25 π x 104 m4
Q= A1 y1
¿ π ( 0.1 ) 2
2 ( 4 R
3 π )
¿ π ( 0.1 )2
2 ( 4 x 0.1
3 π )
Q=6.665 x 104
τ B= 20 π x 6.665 x 104
0.25 π x 104 x 0.2
¿2666 kN /m2
σ B= M y
I = 20 π x ( 1 ) x ( 0.1 )
0.25 π x 104 =80,000 kN /m2
σ y=σ Z=τxz=τ yz=0
Answer (B)
Principal stress at point B,
3 | P a g e
Document Page
σ 1,2=( σ x +σ y
2 )± ( σ x +σ y
2 )2
+ ( τxy )2
¿ 80,000+ ¿
2 ± ( 80000+0
2 )2
+ (2666 )2 ¿
σ 1,2=40000 ± 40088.74
σ 1,2=80088.74 (Tensile) kN /m2
σ 1,2=88.74 ( Compressive )
Answer (c)
Yielding not occur at point “B”.
τ max=± ( σ x +σ y
2 )2
+τxy
2
¿ ( 80000+0
2 )2
+ 26662
¿ 40088.74 kN
m2
¿ 40.088 Mpa
As per given condition if maximum shear stress greater then yield stress then yield occur, but value
of maximum shear stress is lower than yield stress therefore yielding not occur at point “B”
Answer (3):
StrainTensor= [εxx εxy εxz
εyx εyy εyz
εzx εzy εzz ]
¿
[ u
x
1
2 ( u
y + v
x ) 1
2 ( u
z + w
x )
1
2 ( u
y + v
x ) v
y
1
2 ( v
z + w
y )
1
2 ( u
z + w
x ) 1
2 ( v
z + w
y ) w
z
]Assume 1mm pressed after applied vertical force,
So the strain in vertical direction = changelenght
originallenght = 1
10 =0.1
4 | P a g e

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Whereas die fixed test specimen in horizontal direction and Z-direction.
Therefore specimen cannot expand in X and Z direction or X1 and X3 direction.
The remaining component values are 1.
¿ [ 1 0.5 0
0.5 0.1 0.5
0 0.5 1 ]
Answer (B)
f ( m ) =l
f ( x 2 ) =x 1
[ u
x 1
1
2 ( u
x 2 + v
x 1 ) 1
2 ( u
x 3 + w
x 1 )
1
2 ( u
x 2 + v
x 1 ) v
x 2
1
2 ( v
x 3 + w
x 2 )
1
2 ( u
x 3 + w
x 1 ) 1
2 ( v
x 3 + w
x 2 ) w
x 3 ]let us consider u=l , v=mw=10 x 3
¿
[ l
x 1
1
2 ( l
x 2 + m
x 1 ) 1
2 ( l
x 3 + (10 x 3)
x 1 )
1
2 ( l
x 2 + m
x 1 ) m
x 2
1
2 ( m
x 3 + (10 x 3)
x 2 )
1
2 ( l
x 3 + (10 x 3)
x 1 ) 1
2 ( m
x 3 + (10 x 3)
x 2 ) 10 x 3
x 3
]
¿
[ 1 1
2 ( 1+1 ) 1
2 ( 0+0 )
1
2 ( 1+1 ) 1 1
2 ( 0+0 )
1
2 ( 0+0 ) 1
2 ( 0+0 ) 0 ]
¿ [ 1 1 0
1 1 0
0 0 0 ]
For compressive stress σ =
σ =E [1 1 0
1 1 0
0 0 0 ] N /mm2
5 | P a g e
Document Page
Answer (C)
As given m = 9.5 so the change in length = 0.5mm so that following strain
tensor obtained
ε ij= [ 1 0.025 0
0.025 0.05 0.025
0 0.025 1 ]
σ =ε ij E
¿ 1000 x [ 1 0.025 0
0.025 0.05 0.025
0 0.025 1 ]
σ ij= [ 1000 25 0
25 50 25
0 25 1000 ] N /mm 2
F=σ x 1 x 1 x Area
Fx 1 x 1=1000 x ( 10 x 10 )
Fx 1 x 1=105 N
Answer (4)
Given data:
E=3 Gpa=3000 N
mm 2
ρ=1000 kg
m3
α =100 x 106

T =1
Note: the rod is dividing into two segment with three nodes point.
The element stiffness matrix are,
K1= AE
50 [ 1 1
1 1 ]
K2= AE
50 [ 1 1
1 1 ]
Thus,
The global stiffness matrix K assembled
6 | P a g e
Document Page
K= AE
50 [ 1 1 0
1 2 1
0 1 1 ]
Now, in assembling F, both temperature and point load effects have to be consider. The element
temperature force due to T =1 are obtained
θ1= AEαT [ 1
1 ]
And
θ2= AEαT [ 1
1 ]
Upon assembling θ1θ2 and the point load, we get
F= AEαT [1
0
1 ]
F=Kx using equationorder ¿ get displacement
AE
50 [ 1 1 0
1 2 1
0 1 1 ][ u 1
u 2
u 3 ] =AEαT [ 1
0
1 ]
elemenating first rawfirst coloum
AE
50 ( 2u 2u 3 ) =0
2 u 2=u 3
u 2+u 3=αT
put value of u 3=2u 2above equation
u 2=αT
u 2=104 mm
u 3=2 x 104 mm
In evaluate elements stresses, we have using following equation,
σ 1= E
l 1 [1 1 ] [ 0
10 4 ]EαT
¿ 3000
50 ( 104 )3000 x 104 x 1
¿ 60 x 1043000 x 104
7 | P a g e

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
σ 1=0.294 N
mm 2 (1)
σ 2= E
l 1 [ 1 1 ] [ 10 4
2 x 104 ]EαT
¿ 3000
50 (104 +2 x 104 )3000 x 104 x 1
σ 2=0.294 N
mm 2 (2)
Answer (B)
σ =ρg ( Lx )
Let x=50 mm ,
σ x=50=1000 x 10 x ( 0.10.05 )
σ =0.5 N
mm 2 . ( 3 )
x=99 mm
σ x=99=1000 x 10 x ( 0.10.099 )
¿10 N
mm 2 (4 )
Compare results of (1),(2) with (3) and (4) . The results are major difference. In order to get
accurate result more elements need to divide at each mm variation of stress. The finite element
analysis use for obtaining accurate solution with least error. Whereas given calculative method
considering entire body so that probable error occur.
8 | P a g e
1 out of 8
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]