Solved problems in Applied Mathematics

Verified

Added on  2023/06/04

|9
|1357
|259
AI Summary
This text provides solutions to problems in Applied Mathematics including solving equations, evaluating derivatives, and atmospheric pressure. It also includes a summary of the steps taken to solve each problem.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Applied Mathematics
Institution Name
Student Name
Date of Submission

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
1. Solve the equations
a) ( 1
5 ) x
= 1
25
xln ( 1
5 )=ln ( 1
25 )
x=
ln ( 1
25 )
ln (1
5 )
=2
b) 92 x ¿ 27x2
= 1
3
34 x33 x2
=31
4 x+3 x2=1
3 x2+4 x=1
3 x2+4 x +1=0
Obtaining the value of x
x=b ± b24 ac
2 a
¿ 4 ± 42431
23 =11
3
c) e0.134 t =7
0.134 t =ln7
t= ln7
0.134 =14.5217
d) logc 729=6
log c 7291=6
logc( 1
729 )=6
From the laws of logarithm this can be transformed to
c6= 1
729
6 lnc=ln ( 1
729 )
lnc=
ln ( 1
729 )
6
Document Page
lnc=1.0986
c= 1
3
2.
a) 2 logb 64 logb 2+ 1
3 logb 64=2
logb 36logb 16+ logb 4=2
logb (36
16 4 )=2
logb 9=2
This can be transformed to
b2=9
2 logb=log 9
logb= log 9
2
logb=0.4771
b=3
b) log ( x2 ) log ( x7 ) =log (2x)
log ( x2
x7 )=log (2x)
x2
x7 =2x
x2=(2x)( x7)
x2=2 x14x2 +7 x
2 x14x2+7 xx +2=0
x2+ 8 x12=0
x28 x +12=0
x=b ± b24 ac
2 a
8 ± 6448
2
8 ± 16
2 = 8 ± 4
2
Document Page
This gives 2 or 6
3. Waterfront murder
a) The T (0) indicates the value of the body temperature at time 0. This significantly
indicates the body temperature at the time the murder took place
b) Using the equation T ( t ) =10+ 27 ekt , given that k=0.0953108 .
This modifies our equation to T ( t )=10+ 27 e0.0953108t
At the time of death, the body temperature was
T ( 0 )=10+27 e0.09531080=37
The degree difference between the time of the murder and the discovery of the
body is 3732=5
Using the temperature, we can calculate the time taken in between which is.
5=10+27 e0.0953108 t
Ext we now solve for t.
5
27 =e0.0953108 t
ln ( 1
27 )=0.0953108t
t=
ln ( 1
27 )
0.0953108 =17.69 hrs
The body was discovered at 3:15 am going 17 hrs 41 minutes behind gives
9:34 am
The victim dies at 9:34 am of the previous day.
4. Evaluation of derivatives
a) H ( x )= S ( x )t (x )
P(x)
Using the quotient and product rules of differentiation
Product rule
d ( uv )=u1 v +v1 u
Quotient rule
d ( u
v )= u' v +v ' u
v2

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
H' ( x )= ( s ( x )t ( x ) ) p ( x )P ' ( x )¿ ¿
But ( s ( x )t ( x ) ) ' =S' ( x ) t ( x ) +t' ( x ) S (x)
This gives
H' ( x ) = ( S' ( x ) t ( x ) +t' ( x ) S ( x )) p ( x ) P '(x )¿ ¿
¿ [ ( 36 )+ ( 51 ) ]4 (2 )[ (1 )6]
42 = 5
2
b) J ( x )=S ( P ( x ) ) + P( s ( x ) )
J' ( x ) =S' ( P ( x ) )p' ( x ) +P' ( S ( x ) )S ' ( x)
Replacing the values gives
J' (2 )=S '( P ( 2 ))P' ( 2 ) +P '(S ( 2 ) )s ' (2)
S' ( 4 )(2 ) +( P' (1 )3)
¿ ( 12 )+ ( 103 )=28
5. Differentiation
a) y=x2 ln ( 4 x )
Using the product rule
y' =2 xln4 x+ ( 1
4 x 4 )x2
¿ 2 xln 4 x + 1
x x2
2 xln 4 x+ x
b) h ( t )= a e3t
t2
Applying the quotient rule
d ( u
v )= u' vv ' u
v2
3 a e3 tt2(2ta e3 t )
t4
3 a t2 e3 t 2 tae3 t
t4
c) f ( t )= 1
2 π cos ( π θ3 ) sin (2 πθ)
Document Page
1
2 π d ¿
1
2 π ¿
¿3
2 π 2 sin ( π θ3 ) +cos (2 π θ)
d) g ( x )=2 ( x2 b2 )
( 1
3 )
2 ¿
¿ 4
3 x ( x2b2 )
2
3
¿
4
3 x
( x2b2 )
2
3
6. Atmospheric pressure
a)
p ( h )=760 e0.145 h
p ( 10 )=760 e0.14510
¿ 178.2734 mmHg
On the ground
p ( 0 )=760 e0.1450 =760 mmHg
The atmospheric pressure is higher in the ground than in high altitude areas. The
atmospheric pressure on the earth’s surface is generated by the layer of air above
the ground. As one goes higher the layer becomes thinner hence reduction on the
atmospheric pressure.
b) Rate of change
p' ( h )=760 ¿
110.2 e0.145h
p ( 10 )=110.2 e0.14510
¿¿25.8496mmHg/Km
Document Page
As theplane goes higher by 1 km the atmospheric pressure reduces by 25.8496
mmHg.
7.
a)
i=0
n
( ai2 )
The of the firts n termsthe arithmetic series is obtained by the formula
Sn= n
2 ¿ ¿
Since we have

i=0
n
( ai2 )=2+ ( a2 )+ (2 a2 ) ++n
Sn= n
2 [2 ( 2 ) ( n1 ) ( a4 ) ]
a=2 while d=(a4)
¿ n
2 [na+4 n+a4 ]
¿ n
2 [na+4 n+a4 ]
¿ n
2 [ ana+4 n4 ]= n [ a ( n+1 )4 ]4
2
b)
i=1
5
(3 i2 )
a=32=1
Now
i=1
5 5 [ 1 ( 5+1 ) 4 ] 4
2
5 [ 1 ( 6 ) 4 ] 4
2
¿ 5 ( 64 ) 4
2 =3
c) r =
4
9
2
3
= 2
3

i=1
5
a rn1=¿
i=1
5
( 2
3 )i1
¿

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
d) Sn= a ( 1r ) n
1r
Replacing the value of r and n we have
Sn=
a (1 2
3 )6
12
3
= 1
243
e) At the first one million values we can use the sum to infinity which is given by
the formula ¿ a
1r = 1
1 2
3
=3
Document Page
References
Thomas, G. B., W., M. D., Joel, H., & Frank, R. G. (2008). Calculus. Addison-Wesley.
Zill, D. G., Wright, S., & S., W. (2009). Calculus: Early Transcendentals. Jones & Bartlett
Learning.
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]