This assignment focuses on various topics in Trigonometry including polar expressions, rectangular coordinates, polar points, vector components, and more.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Assignment Trigonometry <STUDENTNAME> APRIL 15, 2019
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Problem 1.SHOW ALL WORK. Given the polar point (4, -19π/6) 1A. Find two other polar expressions for the point, one with a negative r value, and another with a positive r value.Use exact values. 4(cos(−19π 6)i+sin(−19π 6)j) 4(−√3 2i+1 2j) ¿−4(√3 2i−1 2j)=(−4,11π 6) 4(−√3 2i+1 2j)=(4,5π 6) 1B. Convert the polar point (4, -19π/6) into rectangular coordinates (x,y). Compute the coordinates exactly. Polarpointisgivenbyr(icosθ+jsinθ) r=4 θ=π 6 4(−√3 2i+1 2j)=−3.464i+2j (x,y)=(−3.46,2) Problem 2.Fill in the blanks in the listed polar points (r, θ) below, to satisfy the polar function r = 1 – 6cos(2θ).Find all of these points exactly. Given θ = π, find r: ( ____, π) Sol. Givenr=1−6cos2θ r=1−6cos−12π r=1−6 r=−5 Given θ = π/8, find r: (¿¿, π/8) Sol. Givenr=1−6cos2θ
r=1−6cos−12π 8 r=1−6cosπ 4 r=1−6(1 √2) r=1−3√2=−3.24 Find one specific point. Given r = 4, find θ: ( 4,____) Sol. Givenr=1−6cos2θ 4=1−6cos2θ cos2θ=−1 2 2θ=cos−1−1 2 2θ=2π 3 θ=π 3 Graph the polar function r = 1 – 6cos(2θ). Locate and label on your graph the three points you found above in problem 2A. Sol.
-10-9-8-7-6-5-4-3-2-1012345678910 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Problem 3.Convert the rectangular point (-12, 0) into polar coordinates in the form (r, θ). Find exact values. Given(x,y)=(−12,0) r=√x2+y2 r=√122+02=12 tanθ=y x=¿θ=tan−1y x tan−10 12=π (-5,π) (-3.24,π/4) (-4,π/3)
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Therefore, polar coordinate is (12,π¿ Problem 4: 4A. VectorWhas a magnitude of 20 and when drawn in standard position, makes an angle of 106° with the positive x axis. Draw vectorWand resolve it into its component form. Round your final answers to the nearest hundredth. Ans) w=wcos106°i+wsin106j w=−5.512i+19.225j 4B. VectorZhas a magnitude of 14 and when drawn in standard position, makes an angle of 320° with the positive x axis. Draw vectorZand resolve it into its component form. Round your final answers to the nearest hundredth. Ans) z=zcos320°i+zsin320j z=10.724i+−8.999j 4C. Draw the vector sumW+Zin standard position and find the component formZofW Ans) w=−5.512i+19.225j z=10.724i+−8.999j
z+w=(10.724i+−8.999j)+(−5.512i+19.225j) z+w=5.212i+10.226j 4D. Find the angle the vector sumW+Zmakes with the positive x axis. Round your final answer to the nearest tenth of a degree. Ans) tanθ=10.226 5.212=1.962=¿θ=63° Problem 5.Vectoruis < 8, -5>. Vectorvis < -3, 15 > 5A. Find the vectorv−u. Find exact values. Ans)v=8i−5j u=−3i=15j v – u = -11i+ 20j 5B. Find the magnitude of vectorv − u:||v− u||. Find an exact value. Ans) r=√−112+202=22.825 5C. Find the dot productu ∙ v. Find an exact value. Ans) v.u=(8i−5j).(−3i+15j) ¿(8×−3)+(−5×15) ¿−24−75 ¿−99
5D. Find the angle θ betweenuandv. θ should be an angle between 0° and 180°, rounded to the nearest hundredth of a degree. Ans) cosθ=⃗u.⃗v⃗ |u|⃗|v| cosθ=−99 √89√234 ¿>θ=133.32° Problem 6.Pick a set of vectorsuandvand do the following 5 items for u= < 12, 2 > andv= < 2, -8> Draw each vector in standard position. Ans)
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
B. Find the magnitude of vectoru:||u|| Ans) r=√122+22=12.165 C. Find the sum of vectors<u+ v >,and sketch the graph of<u+ v >in standard position. Ans) u+v=10i−6j D. Find the angle θ, in degrees, between the vectorsuand v. θ should be between 0° and 180°. Ans) v.u=(12i+2j).(2i−8j)=(12×2)+(2×−8)=24−16=8 cosθ=⃗u.⃗v⃗ |u|⃗|v| cosθ=8 √148√68=¿θ=85.426°