Learn about balancing and vibration with solved numerical problems on Desklib. Get solutions for multiple plane balancing, balancing in one plane, and free body diagram of crankshaft.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Balancing and Vibration
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Numerical on Balancing and Vibration Contents Solution -1.......................................................................................................................................3 Solution -2.......................................................................................................................................4 Solution -3.......................................................................................................................................6 Solution -4.....................................................................................................................................10 a)................................................................................................................................................10 b)................................................................................................................................................12 c)................................................................................................................................................13 1|P a g e
Numerical on Balancing and Vibration Solution -1 The given problem statement describe the balancing in one plane, The balancing of single plane can be done in following ways The given amplitude = 0.165 mm at an angle = 15oclockwise. Required mass = 50 gm at an angle 45oCCW and amplitude 0.225 mm. For solving this problem, first we must convert all polar vectors into rectangular vector form. Let the vector of required mass = ⃗Vu ⃗ Vu=0.165←15o= = 0.165*Cos (-15o) +0.165*Sin (-15o) = 0.16 - 0.0427j The calculated vector of trial weight, ⃗Vu+w⃗ Vu+w=0.225<35o= 0.18431+0.130j Now required weight vector⃗ Ww=50<45o= 35.36 + 35.36j We can present the required vector in the following way⃗ Vu=⃗AA⃗Ww…………. (i)⃗ Vu+w=⃗AA(⃗Ww+⃗Ww)…………. (ii) From above equation, we must subtract (i) from (ii)⃗ AA=⃗Vu+w−⃗Vu⃗ Ww ¿[0.184+0.130j]−[0.16−0.0427j] 35.36+35.36j=(0.024+0.176j) 35.36+35.36j= (−0.024+0.176j)(35.36−35.36) (35.36+35.36)35.36−35.36¿¿=6.72−5.304j 2500.659 = 0.0024+0.17271j This is the required vector ⃗AAnow we must calculate⃗Wu, with following mathematical condition. 2|P a g e
Numerical on Balancing and Vibration⃗ Wu=⃗Vu+w⃗ AA −⃗Ww If we present the values in above equation ¿[0.184+0.130j] 0.0024+0.17271j−35.36+35.36j = -6.15-2.0812j Now the required vector is calculated, to make the wheel balanced, we must place this mass in opposite direction of wheel i.e. ⃗B=−⃗Wu Or⃗B=6.15+2.0812j The vector in polar form is given as⃗ B❑=6.49<18.67oCCW. As the result above calculated, we must put the mass of 6.49 gm at 18.67oCCW Solution -2 There is mass of 1 kg, 3 kg and 2 kg, are in the radius of 50, 75 and 25 mm, in the planes C, D, and E, the support bearing is at the place B, and F. This is the case of multiple plane balancing. As the condition above described, We must calculated the mass and radius in plane A,G. Taking G as the reference plane, we must calculate all the distances lf=200mm 3|P a g e
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Numerical on Balancing and Vibration lE=600mm lD=1200mm lC=2000mm lB=2200mm lA=2600mm The weight vector, for given mass can be represented as given below⃗ WC=1<90o⃗ WD=3<220o⃗ WE=2<330o Calculating the all radius position as per reference plane radius position Wc '=rc Rx⃗WC=50 50∗1=1Mass as per new weight vectorWc '=1<90o, with predefined reference plane of 50 mm WD '=rD Rx⃗WD=75 50∗3=1Mass as per new weight vectorsWc '=4.5<220o, with predefined reference plane of 50 mm radius WE '=rE Rx⃗WE=25 50∗2=1MassaspernewweightvectorsWc '=1<330o, with predefined reference plane of 50 mm As per new weight vector, we must convert all polar vectors into rectangular form Polar vector ofWAC '=1<90o, will be 0+ 0.77j with predefined reference plane of 50 mm Polar vector ofWAD '=4.5<220o, will be -1.59 - 1.34j with predefined reference plane of 50 mm Polar vector ofWAE '=1<330o, will b0.2 -0.12j with predefined reference plane of 50 mm The total unbalance weight in rectangular form = -1.39-0.69j. The required vector from above result = ⃗WA=⃗WAC+⃗WAE+⃗WAD The required weight at position A in rectangular form = -1.39-0.69j or1.552<206.39oAns 4|P a g e
Numerical on Balancing and Vibration Similarly, we must calculate unbalance weight in plane G WGC '=lA−lC lA x⃗W'C=2600−2000 2600∗1=0.2301MassaspernewweightvectorWc '=0.2301<90o, or (0, 0.23j) with predefined reference plane of 50 mm WGD '=lA−lD lA x⃗W'D=2600−1200 2600∗4.5=2.423MassaspernewweightvectorWc '=2.423<220o, or (-1.86, -1.56j) with predefined reference plane of 50 mm W¿ '=lA−lE lA x⃗W'E=2600−600 2600∗1=0.231MassaspernewweightvectorWc '=0.77<330o, or (0.67, -.39j) with predefined reference plane of 50 mm Total unbalance vector =⃗ WG=⃗WGC+⃗W¿+⃗WGD⃗ WG=¿-1.19-1.72j or2.09<23532at radius 50 mm Therefore, required weight at A = 1.552 kg and at G = 2.09 kg at a radius of 50 mmAns Solution -3 As per the question described, this is the free body diagram of crank shaft its each piston is separated by fix distance in axial direction, and constant angular position. α1=a6=0o,a2=a5=120o,a3=a4=240o, The length is represented as r, The connecting rod is represented by l, reciprocating mass is represented by m, and rotating mass = mCCylinder 1 is taken as reference plane. 5|P a g e
Numerical on Balancing and Vibration l1=0m Distance for reciprocating cylinder 2 =l2=a Distance for reciprocating cylinder 3 =l3=2a Distance for reciprocating cylinder 4 =l4=3a distance for reciprocating cylinder 5 =l5=4a distance for reciprocating cylinder 6 =l6=5a The angular velocity = ω The forces acting in x,y, and z direction can be given as (Fx)i=(m+mc)rω2cos(ωt+αi)+mr2ω2 lcos(2ωt+2αi)……(i) The x component of all forces in x direction (Fx)total=(m+mc)rω2 ∑ i=1 N cos(ωt+αi)+mr2ω2 l∑ i=1 N cos(2ωt+2αi)……(ii) Similarly, the x and y component of all forces in y direction (Fy)total=−(mc)rω2 ∑ i=1 N sin(ωt+αi)…………(iii) For the pupose of simplifying the equation we must take. t = 0 The variable is given as follows ∑ i=1 N cos(ωt+αi),∑ i=1 N cos(2ωt+2αi),∑ i=1 N sin(ωt+αi) For equation, ∑ i=1 N cos(ωt+αi)=∑ i=1 N cos(0t+αi)=∑ i=1 N cos(αi) ⟹∑ i=1 N cos(αi)=cos(α1)+cos(α2)+cos(α3)+cos(α4)+cos(α5)+cos(α6) 6|P a g e
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Numerical on Balancing and Vibration Putting the value ofa1=a6=0o,a2=a5=120o,a3=a4=240o, ⟹∑ i=1 N cos(αi)=cos(0o)+cos(120o)+cos(240o)+cos(240o)+cos(120o)+cos(0o)=1−0.5−0.5−0.5−0.5+1=0 The trigonometrical value,∑ i=1 N cos(2ωt+2αi), Putting the α value and t = 0 ∑ i=1 N cos(2ωt+2αi)=cos(2∗0o)+cos(2∗120o)+cos(2∗240o)+cos(2∗240o)+cos(2∗120o)+cos(2∗0o)=1−0.5−0.5 For equation∑ i=1 N sin(ωt+αi)=∑ i=1 N sin(0t+αi)=∑ i=1 N sin(αi) ∑ i=1 N sin(αi)=sin(αi)+sin(α2)+sin(α3)+sin(α4)+sin(α5)+sin(α6) ∑ i=1 N sin(αi)=sin(αi)+sin(α2)+sin(α3)+sin(α4)+sin(α5)+sin(α6) Putting the value ofa1=a6=0o,a2=a5=120o,a3=a4=240o, ∑ i=1 N sin(αi)=sin(0o)+sin(120o)+sin(240o)+sin(240o)+sin(120o)+sin(0o) ∑ i=1 N sin(αi)=0+√3 2−√3 2−√3 2+√3 2+0 = 0 Putting the required value in equation (ii) (Fx)total=(m+mc)rω2 ∑ i=1 N cos(ωt+αi)+mr2ω2 l∑ i=1 N cos(2ωt+2αi) (Fx)total=(m+mc)rω2xo+mr2ω2 lx0=0 Replacing the required value from trigonometry (iii) 7|P a g e
Numerical on Balancing and Vibration (Fy)total=−(mc)rω2 ∑ i=1 N sin(ωt+αi)=¿−(mc)rω2(0)=0 We can see that, the sum of unbalance forces in x and y direction is 0 (Fx)total=0 (Fy)total=0 Calculating the moment about z axis Mz=∑ i=0 N (Fx)ili From equation (i) Mz=(m+mc)rω2 ∑ i=1 N cos(ωt+αi)+mr2ω2 l∑ i=1 N cos(2ωt+2αi)xli……(iv) Calculating the moment about z axis Mx=∑ i=0 N (Fx)iliFrom equation (iii) Mx=−(mc)rω2 ∑ i=1 N sin(ωt+αi)∗li ¿,−(mc)rω2 ∑ i=1 N li∗sin(αi)………. (v) Replacing with trigonometrical value ofa1=a6=0o,a2=a5=120o,a3=a4=240o,l1=0,l2=a,l2=a ,l2=2a,l2=3a,l2=4a,l2=5a ∑ i=1 N cos(ωt+αi)∗li=0∗cos(0o)+a∗cos(120o)+2a∗cos(240o)+3a∗cos(240o)+4a∗cos(120o)+5a∗cos(0o) ¿0−0.5a−a−1.5a−2a+5a=0 In the same way,∑ i=1 N cos(2αi)∗liis zero, and value for∑ i=1 N sin(2αi)∗liis zero. Therefore, from equation (iv), Mz=0 8|P a g e
Numerical on Balancing and Vibration Mx=0 From the above calculation of moment in x and z direction which is zero, we can say that, the crank shaft with reciprocating piston is fully balanced Solution -4 a) Figure1-Free Body diagram of mass m1and m2 First of all we must determine equation of motion for given condition The equation of motion for mass m1can be given as m1¨x1+c1¿…. (a) Similarly, equation of motion for second mass m2¨x2+k2x2−k2x1=0 −ω2x1=¨x1 9|P a g e
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Numerical on Balancing and Vibration −ω2m2¨x2+k2x2−k2x1=0 m2¨x2+˙x2c2−˙x1c2+x2k2−x1k1=0………. (b) The above equation in matrix form is [m10 0m2][¨x1 ¨x2]+[c1+c2−c2 −c1c2][˙x1 ˙x2]+[k1+k2−k2 −k1k2][x1 x2]= [c1˙˙y+k1y 0]Ans Based on the above equation the frequency equation can be determined as follows ω4−(K1+K2 m1)ω2+k1k2 m1m2 =0………... (i) The root of the above equation will, be required frequency ω1 2,ω2 2=k1k2 2m1 +k2 2m2 ∓√1 4(k1k2 2m1 +k2 2m2)2 −k1k2 m1m2 Ans The mode vector, first we must harmonise the equation r1=X2 (1) X1 (1) r2=−m1ω1 2+k1+k2 k2 ………(c) r2=X2 (2) X1 (2)………(d) r2=−m1ω2 2+k1+k2 k2 The phase angle of given system ϕ1=tan−1 {−r2˙x1(0)+˙x2(0) ω1[r2x1(0)−x2(0)]} ϕ2=tan−1 {−r1˙x1(0)+˙x2(0) ω2[r1x1(0)+x2(0)]} 10|P a g e
Figure2-Free body diagram Numerical on Balancing and Vibration As per above equation, response of the system toω1 x1(t)=X1 (1)cos(ω1t+ϕ1)+X1 (2)cos(ω2t+ϕ2) As per above equation, response of the system toω2 x2(t)=X2 (1)cos(ω1t+ϕ1)+X2 (2)cos(ω2t+ϕ2) Now the mode of the vector for equation Firstmode=⃗x(1)(t)={X1 (1)cos(ω1t+ϕ1) −X1 (1)cos(ω1t+ϕ1)} Secondmode=⃗x(2)(t)={X1 (2)cos(ω2t+ϕ1) −X1 (2)cos(ω2t+ϕ1)} b) As per the given diagram, the equation of the motion from free body diagram can be given as m1¨x1+(k1+k2)x1−pSinθ=0……. (a) The equation for bob of the pendulum can be given as For the dynamic equilibrium of the bob, we must take moments about the pivot points. 11|P a g e
Numerical on Balancing and Vibration m1l2¨θ−m2glSinθ=0………….. (b) Suppose angle θ is very small, then Sinθ≅θ NowP=m2gCosθ≅m2g Equation of motion can be obtained by putting these values in equation (a) and (b) m1¨x1+(k1+k2)x1−m2gθ=0 m1l2¨θ−m2glθ=0Ans If system is in harmonic condition the given equation x1(t)=X1cos(ωt+ϕ)…………. (b) x2(t)=X2cos(ωt+ϕ) Rear ageing the equation of motion {−m1ω2+(k1+k2)+m2g l}X1−m2g lX2………. (d) −m2g lX1+{−m2ω2+m2g l}X2=0………. (e) The equation is in matrix form, and its frequency [−m1ω2(k1+k2)+m2g l −m2g l−m1ω2+m2g l]=0………..(f) m1m2ω4−m1m2g lω2+m2g l(k1+k2+m2g l)=0 The roots of the equation provide the natural frequency of vibration of the system ω1 2,ω2 2= (−m1m2g l)±√(−m1m2g l)2 −4m1m2 m2g l(k1+k2+m2g l) 2m1m2 Ans. c) as per the free body diagram given below, the moment of mass m1 12|P a g e
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Figure3Free body diagram (mode-1) Figure4Free body diagram (mode 2) Numerical on Balancing and Vibration m1l1 2¨θ1=−w1(l1sinθ1)+QSinθ2(lCosθ1)−QCosθ2(l1sinθ1) Suppose Q = W2 Then, m2l2 2¨θ2+m2l2(l1¨θ1)=¿−w2(l2sinθ2)…. (c) We know that,θ1=x1 l1 andθ2=x2−x1 l2 Placing the data in (a) and (b) m1l1 2¨x1+[w1+w2(l1+l2 l2)]x1−w2l1 l2 x2=0(d) The standard form of equation of motion m2l2¨x2+w2x1+w2x2=0 Putting the value of m1= m2= m, l1= l2= l, w1= w2= mg the equation (c) and (d) gives equation of motion. ml¨x1+3mgx1−mgx2=0…….(e) ml¨x2−3mgx1+mgx2=0…… (f) The harmonic solution for the given equation, x(t)=xCosωtPutting the value in equation (g) 13|P a g e
Numerical on Balancing and Vibration −ω2mlX1+3mgX1−mgX2=0…… (h) −ω2mlX2−mgX1+mgX2=0 As per above system the frequency equation can be given as ω4m2l2−4m2lgω2+2m2g2=0 The frequency will be root of the given equation ω1 2,ω2 2=(2∓√2)g l And the amplitude will be X1 X2 =mg −ωml+3mg=¿ The modes of the given equation Firstmode=⃗x(1)(t)={X1 (1)mg −X1 (1)−ωml+3mg} Secondmode=⃗x(2)(t)={X1 (2)mg −X1 (2)+ωml−3mg} References Callister, W., & Rethwisch, D. (2010). Materials Science and Engineering : An Introduction (8th ed.). New York: John Wiley & Sons. Cengel, Y. (2017).FluidMechanics(3rd ed.). New York: Mc Graw Hill. Cheney, M. (2012). Tesla, Man out of time.Manufacutingtechnology, 1-12. David Alan Collier, J. R. (2012).OperationsManagement(2nd ed.). New York: Cengage Learning. Haym Benaroya, M. L. (2017).MechanicalVibration:Analysis,Uncertainties,andControl(1st ed.). Boca Raton: CRC. Hude, N. (2016). HuntsMan: Scheduled Inspection report.EnvironmentalairQuality,1(1), 1-10. Inman, D. J. (2014).EngineeringVibration.New Jersey: Pearson Education. 14|P a g e
Numerical on Balancing and Vibration Joshi, K. (2016). Hybrid Tesla Pelton Wheel Turbine.InternationalJournalofScientific& EngineeringResearch,7(9), 1-6. Melsungen, B. (2012). European Patent policy possible stationary ethylene oxide sterilisation plant.OperationManagement,1(1), 1-30. Ofem, M. I. (2016). Effect on mechanical properties of rice Husk/E-Glass polypropylene hybrid composites.JournalofAdvancesinTechnologyandEngineeringResearch,2(4), 6-9. Palm, W. J. (2010).Mechanicalvibration(2nd ed.). New York: Wiley. Quality, O. o. (2008). Ethylen oxide commercial sterlisation and fumigation operation.AIr Qualityadplanningjournal,1(1), 1-56. Radomirovic, I. K. (2018).MechanicalVibration:FundamentalswithSolvedExamples. Hoboken: John Wiley. Rao, S. (2013).MechanicalVibration(6th ed.). New Jersey: pearson. Sanghvi, M. (2016). Desgin and material selection in disk.InternationalJournalofScientific& EngineeringResearch,8(7), 1-8. Schnifer, J. (2016). Immission control approval notification.districtgovernmentMunster,1(1), 1-25. Thakur, M. S. (2017). Investigation of design parameter of two wheeler frame through comparative analysis.ScholarofAutomobileEngineering, 1-4. 15|P a g e