This document explains the importance of regression analysis in reducing production costs. It includes data, formulas, and calculations for determining the relationship between weight and height parameters.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
BUSINESS ANALYTICS
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
BUSINESS ANALYTICS Q1 i.The visualizations in the report are of very good quality with distinct colors and visible labels. The report provides explanations with high quality graphics, this makes it more presentable and understandable. The report also presents extensive and relevant information on innovation in the retail business sector. ii.The key information from the report include: 1.Up to 87% of retailers are either improvers or innovation active. 2.Up to 48% of retailers invest in sales and marketing. 3.The return on investment (ROI) for innovation investment in retail is 1.97. This informs a retailer on market trend with respect to investment on growth and use of innovation. This is useful in cases when, for instance, a retailer is faced with a decision on how to utilize new investment. iii.The purpose of the report is to present findings on innovation in the retail business sectors in Australia for the year 2018. The report compares the findings for the multichannel retailers, brick and mortar retailers, and purely online retailers with respect to innovation. The report also compares the 2018 findings with the findings for 2017. Multichannel retailers are the most innovation active retailers with retail innovation activity slightly decreasing from 2017 to 2018. iv.In order to improve this report, more precise visualizations have to be used with inclusion of more explanations. The report appears to have too many graphic visualizations and too few explanations. Merging or reducing graphs and increasing explanations will improve the report 2
BUSINESS ANALYTICS Q2 i.Regression analysis is an important statistical tool for determining methods for reduction in the cost of production. Regression can be applied to determine which factors significantly affect the cost of production for an entity. These factors can then be adjusted appropriately to ensure that the cost of production is reduced without affecting quality of product and profit margins for the entity. ii.Table 1contains data on 10 individuals with regards to weight (measured in kilograms) and height (measured in feet) parameters. Table1 IndividualWeight (in Kilograms) Height (in feet) 1555.7 2545.5 3575.1 4567 5524.2 6565.3 7576.7 8575.7 9575.6 10566.1 iii.The graph inFigure 1: Scatterplot for Weight Versus Heightbelow shows the plot of Weight against Height for the 10 individuals inTable 1. Some data points in the graph below align in a linear manner, however other data points equally fall outside the linear alignment. This implies that there may exist some form linear relationship but not significant enough to be considered as the general relationship between the Weight and Height parameters. 3
BUSINESS ANALYTICS 44.555.566.577.5 49 50 51 52 53 54 55 56 57 58 Scatterplot for Weight Versus Height Height Weight Figure1: Scatterplot for Weight Versus Height iv.The formulas below are used for computing the regression equation line. β1=∑(xi−xmean)(yi−ymean) ∑(xi−xmean)2 β0=ymean−β1xmean The calculations for the formulas above are given inTable 2andTable 3below: Table2 Weight = yHeight = x Sum55756.9 Mean55.75.69 Table3 xi−xmean(xi−xmean)2yi−ymean(xi−xmean)(yi−ymean) 0.011E-04-0.7-0.007 -0.190.0361-1.70.323 -0.590.34811.3-0.767 4
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
BUSINESS ANALYTICS 1.311.71610.30.393 -1.492.2201-3.75.513 -0.390.15210.3-0.117 1.011.02011.31.313 0.011E-041.30.013 -0.090.00811.3-0.117 0.410.16810.30.123 ∑¿-4.4E-15∑¿5.669∑¿-2.8E- 14 ∑¿6.67 Thus the values for β1and β0are given as follows: β1=∑(xi−xmean)(yi−ymean) ∑(xi−xmean)2=6.67 5.669=1.177 β0=ymean−β1xmean=55.7−1.177(5.69)=49.34 The regression equation for a simple linear regression is given as[1]: y=β0+β1x Thus, the resultant regression equation for this case will be: y=49.34+1.177x Weight=49.34+1.177Height v.The formula below is used for computing the R2. R2=[∑(xi−xmean)(yi−ymean) √∑(xi−xmean)2 ∑(yi−y)2] 2 The calculations for the formula above is given inTable 4below: Table4 (xi−xmean)2(yi−ymean)2(xi−xmean)(yi−ymean) 1E-040.49-0.007 0.03612.890.323 0.34811.69-0.767 5
BUSINESS ANALYTICS 1.71610.090.393 2.220113.695.513 0.15210.09-0.117 1.02011.691.313 1E-041.690.013 0.00811.69-0.117 0.16810.090.123 ∑¿5.669∑¿24.1∑¿6.67 Thus R2is given as follows: R2=[∑(xi−xmean)(yi−ymean) √∑(xi−xmean)2 ∑(yi−y)2]2 =[6.67 √5.669x24.1] 2 =0.3256 TheR2= 0.3256, hence the goodness of fit of the regression equation is equivalent to 32.56%. vi.Using Excel, the regression analysis results are as given inTable 5below; Table5 SUMMARY OUTPUT Regression Statistics Multiple R0.570642 R Square0.325633 Adjusted R Square 0.241337 Standard Error 1.425318 Observations10 ANOVA dfSSMSFSignificanc e F Regression17.8477517.8477513.8629730.08494 Residual816.252252.031531 Total924.1 Coefficient s Standard Error t StatP-valueLower 95%Upper 95% Lower 95.0% Upper 95.0% 6
BUSINESS ANALYTICS Intercept49.005293.43589714.262745.69E-0741.082156.9284841.082156.92848 X Variable 11.1765740.598631.9654450.08494-0.203872.557018-0.203872.557018 FromTable 5above, the resultant regression equation is given as: y=49.00529+1.176574x Weight=49.00529+1.176574Height Also fromTable 5above, the R2= 0.325633 Comparing these results to those obtained in partsivandvabove, we observe that the values are consistent with each other. Q3 i.Classification can be defined as the categorization of items or subjects into homogenous groups in terms of characteristics while prediction is the forecasting of future values of a parameter of interest[2]. ii.Classification methods include: 1.K-means clustering 2.Hierarchical clustering 3.Neural Nets iii.The algebraic equation for the neural network is as given below: yi=w5 1+e−(b1+i1w1+i2w3)+w6 1+e−(b2+i1w2+i2w4) In classification, the groups of the output variable are usually assigned factors; 0, 1, …, depending on the number of groups (categories). The output value of the neural 7
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
BUSINESS ANALYTICS network is compared to cutoff values that specify where the subject is classified if the output value exceeds or is below the cutoff value. iv.The applications of clustering in business analytics include the following scenarios: 1.Suppose a retailer is interested in identifying the sales similarity for goods at their retail stores. The retailer can use clustering to group the goods according to homogeneity in sales. 2.Consider a case in which a company is interested in developing customized marketing approach for its customers. The company can use clustering to group its customers depending on certain criteria and then develop the customized marketing approach for each of the groups. 3.Suppose a bank is interested in the analysis of the credit worthiness of loan applicants. The bank can use clustering to group the loan applicants depending on the various parameters of interest so as to map the loan applicants. 8
BUSINESS ANALYTICS REFERENCES [1]D. A. Freedman, Statistical Models: Theory and Practice, London: Cambridge University Press, 2009. [2]S. Galit, B. C. Peter, Y. Inbal, N. R. Patel and L. C. Kenneth, Data Mining for Business Analytics, 1st ed., New Delhi: John Wiley & Sons, Inc., 2018. 9