ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Calculus

Verified

Added on  2023/06/15

|10
|2101
|439
AI Summary
This article covers various topics in Calculus such as differentiation, integration, optimization, and more. It includes solved problems with step-by-step solutions. The article also provides insights into finding the maximum and minimum values of a function, calculating the area under a curve, and determining the population growth rate. The content is relevant for students studying Calculus in college or university.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Running head: CALCULUS
Calculus
Name of the Student:
Name of the University:
Author’s note:

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
1CALCULUS
Table of Contents
Answer 1....................................................................................................................................2
Part a (The quotient rule to differentiate):..............................................................................2
Part b (Chain rule to differentiate):........................................................................................2
Part c (Differentiation):..........................................................................................................2
Answer 2....................................................................................................................................2
Part a.......................................................................................................................................2
Part b......................................................................................................................................3
Part c.......................................................................................................................................3
Answer 3....................................................................................................................................3
Part a.......................................................................................................................................3
Part b......................................................................................................................................4
Part c.......................................................................................................................................4
Answer 4....................................................................................................................................5
Part a.......................................................................................................................................5
Part b......................................................................................................................................5
Part c.......................................................................................................................................5
Answer 5....................................................................................................................................5
Part a.......................................................................................................................................5
Part b......................................................................................................................................6
Answer 6....................................................................................................................................6
Document Page
2CALCULUS
Part a.......................................................................................................................................6
Part b......................................................................................................................................7
Answer 7....................................................................................................................................7
Integral by parts:....................................................................................................................7
Document Page
3CALCULUS
Answer 1.
Part a (The quotient rule to differentiate):
y = (2 x43 x )
(4 x1)
If the defined two functions f(x) and g(x) are differentiable, then the quotient is differentiable
and, ( f
g )'
=( f ' gfg '
g2 ).
Here, f = (2x4-3x), g = (4x -1).
Therefore, y’ = ( 2 x4 3 x
4 x1 )' =
( 4 x1 )d
dx ( 2 x43 x ) ( 2 x43 x )d
dx (4 x1)
( 4x )2
=
( 4 x1 )( 8 x33 ) ( 2 x43 x )4
( 4x ) 2
= [ 8 x33
4x 4 x ( 2 x23 )
( 4x )2 ].
Part b (Chain rule to differentiate):
y = 6cos (x3 + 3)
If f(x) and g(x) are both differentiable, then – F’(x) = f ‘(g(x)) g’(x).
Here, g(x) = (x3+3), f(x) = 6 cos x
So, g‘(x) = 3x2, f’(x) = (-6 sin x)
F ‘(x) = f ‘(g(x)) g’ (x) = f ‘(x3) g’(x) = (- 6 sin(x3+3))*(3x2) = (-18 x2 sin(x3+3)).
Part c (Differentiation):
y = ( 4 x2 e2 x ¿ sin 3 x
Now, y’ = d
dx (4 x2e2 x )sin 3 x = sin 3 x d
dx ( 4 x2e2 x ) + ( 4 x2 e2 x ) d
dx (sin 3 x )
= sin 3 x
{( d
dx 4 x2
) ( d
dx e2 x
) }+ ( 4 x2e2 x )3 cos (3 x)
= sin 3 x( 8 x2 e2 x)+ ( 4 x2e2 x ) 3 cos (3 x)
= ( 8 x2 e2 x ) sin 3 x +3 ( 4 x2e2 x ) cos 3 x.

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
4CALCULUS
Answer 2.
Part a
The angular displacement is θ radians. The equation of spoke of a wheel is –
θ = 0.5t4– t3, where ‘t’ is the time in seconds.
The angular velocity after 2 seconds is,
dt ¿t=2=[ ( 0.54 t413 t31 ) ]¿ ¿t=2= [(2t3 – 3t2)] |
t=2
= (2*8-3*4) = (16-12) = 4 radian/sec.
Part b
The angular acceleration is, d2 θ
d t2 = d
dt ( d θ
dt ) = d
dt ( 2 t33 t2 ) =¿ radian/sec2.
The angular acceleration after 3 seconds is = 6*3(3-1) radian/sec2 = 6*6 radian/sec2 = 36
radian/sec2.
Part c
Angular acceleration is 0.
Hence, 6 t ( t1 ) =0
Or, t = 0, 1.
Therefore, at the starting of moving of spoke, the angular acceleration is 0. Also, after 1
second of the angular displacement, the angular acceleration is 0.
Answer 3.
The length and width of metal sheet is 120 mm and 75 mm respectively. Equal squares of
side x are cut from each of the corners. The remaining flaps are then folded upwards to form
an open-ended box.
Part a
Figure 1: Rectangular metal sheet
Document Page
5CALCULUS
120 mm
x mm x mm
1st square 2nd square
First Flip
x mm x mm
75 mm Fourth Second
Flip Base of the box Flip
x mm x mm
Third Flip
3rd square 4th square
x mm x mm
Part b
The length of the base of the box will be (120-x-x) mm = (120-2x) mm.
The width of the base of the box will be (75-x-x) mm = (75-2x) mm.
The height of the box = x mm.
Document Page
6CALCULUS
Therefore, the volume of the box = length*width*height
= (120-2x) mm. * (75-2x) mm. * x mm.
= x*(9000 -150x -240x+4x2) mm3.
= x*(9000 - 390x+4x2) mm3. = (9000x – 390x2 + 4x3) mm3.
Part c
We must find the value of x for which volume (V) is maximum.
V = 9000x – 390x2 + 4x3
or, dV
dx = d
dx ( 9000 x390 x2+4 x3 )= d
dx ( 9000 x ) d
dx ( 390 x2 ) + d
dx ( 4 x3)
or, dV
dx =( 9000780 x +12 x2 )
The first derivative should be 0. Hence, dV
dx =0
Hence, (9000-780x+12x2) = 0,
or, x = 50, 15 (solving the quadratic equation).
The value of x cannot be 50 as in this case the width of base of the box (75-2x) will be
negative. It is impossible and absurd. So, we reject x=50 and accept x=15.
The volume of the open-ended box is maximum when x=15 mm. It shows that the volume of
the box is (9000*15 – 390* 152 + 4* 153) mm3 = (135000 –87750 + 13500) mm3= 60750
mm3.
Answer 4.
Part a
(5 x2 + x 4
x2 ¿) dx= 5 x2 dx+¿ x
1
2 dx ¿ ¿ - 4
x2 dx
=( 5
( 2+ 1 ) x2+1
+
1
( 1
2 )+1
x (1
2 )+1
- 4
(2+1) x2+1
)
= ( 5
3 x3+
1
3
2
x
3
2
4
( 1 ) x1
)= ( 5
3 x3 + 2
3 x
3
2 +4x1) = ( 5 x3
3 + 2 x x
3 + 4
x ¿ .

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
7CALCULUS
Part b
¿ ¿= cos ( x
2 )dx - sin ( 3 x
2 )dx= 2 sin ( x
2 )- (2
3 )cos (3 x
2 )
=2 sin ( x
2 )+ 2
3 cos ( 3 x
2 ).
Part c

1
5
s
s2+ 4 ds
Let, (s2 +4) = k, or, s2 + 4 = k2, or, s2 = k2- 4,
or, 2sds = 2kdk, or, dk = 2 sds
2 k =sds.
Now,
1
5
s
s2+ 4 ds =
1
5 ( ss)
k dk =
1
5
s2
k dk =
1
5 ( k24)
k dk =
1
5
(k dk + 4
k ¿ dk )¿
=
1
5
k dk +
1
5
4
k dk =¿+4*¿
= ( 25
2 1
2 ¿+4(log5log 1) = [ 24
2 +4log(5
1 ¿)¿ = (12 + 4*log 5) = (12+4*0.69897) = (12+
2.79588) = 14.79588.
Answer 5.
Part a
The area bounded by the curve y ¿ 1
x between x = 2 and x = 6 is –

a
b
y dx =
2
6
( 1
x ) dx= ¿ = (log6 – log2) = log ( 6
2 ¿ = log3 = 0.778 (approximately).
Part b
Figure 2: The Sine Curvein the range 0 to 2π
Document Page
8CALCULUS
0 (π/6) (π/3) (π/2) (2π/3) (5π/6) π (7π/6) (4π/3) (3π/2) (5π/3) (11π/6)
-1.5
-1
-0.5
0
0.5
1
1.5
Sine Value
Radians
Sine Value
The area under the sine curve is –

0
1.7 π
y dx =
0
1.7 π
sin x dx = [cos x ]x=0
x=1.7 π = [(cos 1.7 π ¿(cos 0)¿ = ¿) = (1-(-0.30901699)) =
(1+0.30901699) = 1.30901699.
Answer 6.
The instantaneous rate of change of a population = 50 t2 100t
3
2
It is measured in individuals per year and the initial population is 25000 then,
Part a
The change in t years =
0
t
(50 t2100 t
3
2 )dt =
0
t
50 t2 dt -
0
t
100 t
3
2 dt
= ( 50
( 2+1 ) t2+1
)
( 100
( 3
2 +1 ) t
3
2 + 1
)
= ( 50
( 2+1 ) t2+1)t =0
t =t
- ( 100
( 3
2 +1 ) t
3
2 +1
)
t=0
t=t
= ( 50
3 t3)t =0
t =t
- ( 1002
5 t
5
2 )t=0
t=t
= ( 50
3 t30 ¿( 40 t
5
2 0)
Document Page
9CALCULUS
= ( 50
3 t3- 40 t
5
2 ¿
Therefore, the population after ‘t’ years is – (initial population + total population)
= (25000 + ( 50
3 t3
- 40 t
5
2 ¿) = (25000 + 50
3 t3
- 40 t
5
2 ¿.
Part b
The increased population after 25 years = ( 50
3 2534025
5
2 ¿ = (260417 – 125000)
= 135417
Hence, the total population after 25 years would be = (25000 + 135417) = 160417.
Answer 7
Integral by parts:
5 x cos ( 4 x ) dx = [5 xcos ( 4 x ) dx- ( cos 4 x ) dx . d
dx ( 5 x ) dx]
= [5x* sin ( 4 x)
4 ¿ - ¿ ¿ = 5 x sin (4 x )
4 20sin (4 x ) dx
= 5 x sin ( 4 x )
4 ¿( 20
( 4+ 1 ) cos (4 x ) ¿
= ( 5 x sin( 4 x)
4 +4 cos 4 x ).
1 out of 10
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]