Calculus
VerifiedAdded on 2023/06/15
|10
|2101
|439
AI Summary
This article covers various topics in Calculus such as differentiation, integration, optimization, and more. It includes solved problems with step-by-step solutions. The article also provides insights into finding the maximum and minimum values of a function, calculating the area under a curve, and determining the population growth rate. The content is relevant for students studying Calculus in college or university.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running head: CALCULUS
Calculus
Name of the Student:
Name of the University:
Author’s note:
Calculus
Name of the Student:
Name of the University:
Author’s note:
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
1CALCULUS
Table of Contents
Answer 1....................................................................................................................................2
Part a (The quotient rule to differentiate):..............................................................................2
Part b (Chain rule to differentiate):........................................................................................2
Part c (Differentiation):..........................................................................................................2
Answer 2....................................................................................................................................2
Part a.......................................................................................................................................2
Part b......................................................................................................................................3
Part c.......................................................................................................................................3
Answer 3....................................................................................................................................3
Part a.......................................................................................................................................3
Part b......................................................................................................................................4
Part c.......................................................................................................................................4
Answer 4....................................................................................................................................5
Part a.......................................................................................................................................5
Part b......................................................................................................................................5
Part c.......................................................................................................................................5
Answer 5....................................................................................................................................5
Part a.......................................................................................................................................5
Part b......................................................................................................................................6
Answer 6....................................................................................................................................6
Table of Contents
Answer 1....................................................................................................................................2
Part a (The quotient rule to differentiate):..............................................................................2
Part b (Chain rule to differentiate):........................................................................................2
Part c (Differentiation):..........................................................................................................2
Answer 2....................................................................................................................................2
Part a.......................................................................................................................................2
Part b......................................................................................................................................3
Part c.......................................................................................................................................3
Answer 3....................................................................................................................................3
Part a.......................................................................................................................................3
Part b......................................................................................................................................4
Part c.......................................................................................................................................4
Answer 4....................................................................................................................................5
Part a.......................................................................................................................................5
Part b......................................................................................................................................5
Part c.......................................................................................................................................5
Answer 5....................................................................................................................................5
Part a.......................................................................................................................................5
Part b......................................................................................................................................6
Answer 6....................................................................................................................................6
2CALCULUS
Part a.......................................................................................................................................6
Part b......................................................................................................................................7
Answer 7....................................................................................................................................7
Integral by parts:....................................................................................................................7
Part a.......................................................................................................................................6
Part b......................................................................................................................................7
Answer 7....................................................................................................................................7
Integral by parts:....................................................................................................................7
3CALCULUS
Answer 1.
Part a (The quotient rule to differentiate):
y = (2 x4−3 x )
(4 x−1)
If the defined two functions f(x) and g(x) are differentiable, then the quotient is differentiable
and, ( f
g )'
=( f ' g−fg '
g2 ).
Here, f = (2x4-3x), g = (4x -1).
Therefore, y’ = ( 2 x4 −3 x
4 x−1 )' =
( 4 x−1 )∗d
dx ( 2 x4−3 x )− ( 2 x4−3 x )∗d
dx (4 x−1)
( 4−x )2
=
( 4 x−1 )∗( 8 x3−3 ) − ( 2 x4−3 x )∗4
( 4−x ) 2
= [ 8 x3−3
4−x − 4 x ( 2 x2−3 )
( 4−x )2 ].
Part b (Chain rule to differentiate):
y = 6cos (x3 + 3)
If f(x) and g(x) are both differentiable, then – F’(x) = f ‘(g(x)) g’(x).
Here, g(x) = (x3+3), f(x) = 6 cos x
So, g‘(x) = 3x2, f’(x) = (-6 sin x)
F ‘(x) = f ‘(g(x)) g’ (x) = f ‘(x3) g’(x) = (- 6 sin(x3+3))*(3x2) = (-18 x2 sin(x3+3)).
Part c (Differentiation):
y = ( 4 x2 −e2 x ¿ sin 3 x
Now, y’ = d
dx (4 x2−e2 x )sin 3 x = sin 3 x d
dx ( 4 x2−e2 x ) + ( 4 x2 −e2 x ) d
dx (sin 3 x )
= sin 3 x∗
{( d
dx 4 x2
)− ( d
dx e2 x
) }+ ( 4 x2−e2 x )∗3 cos (3 x)
= sin 3 x∗( 8 x−2 e2 x)+ ( 4 x2−e2 x ) ∗3 cos (3 x)
= ( 8 x−2 e2 x ) sin 3 x +3 ( 4 x2−e2 x ) cos 3 x.
Answer 1.
Part a (The quotient rule to differentiate):
y = (2 x4−3 x )
(4 x−1)
If the defined two functions f(x) and g(x) are differentiable, then the quotient is differentiable
and, ( f
g )'
=( f ' g−fg '
g2 ).
Here, f = (2x4-3x), g = (4x -1).
Therefore, y’ = ( 2 x4 −3 x
4 x−1 )' =
( 4 x−1 )∗d
dx ( 2 x4−3 x )− ( 2 x4−3 x )∗d
dx (4 x−1)
( 4−x )2
=
( 4 x−1 )∗( 8 x3−3 ) − ( 2 x4−3 x )∗4
( 4−x ) 2
= [ 8 x3−3
4−x − 4 x ( 2 x2−3 )
( 4−x )2 ].
Part b (Chain rule to differentiate):
y = 6cos (x3 + 3)
If f(x) and g(x) are both differentiable, then – F’(x) = f ‘(g(x)) g’(x).
Here, g(x) = (x3+3), f(x) = 6 cos x
So, g‘(x) = 3x2, f’(x) = (-6 sin x)
F ‘(x) = f ‘(g(x)) g’ (x) = f ‘(x3) g’(x) = (- 6 sin(x3+3))*(3x2) = (-18 x2 sin(x3+3)).
Part c (Differentiation):
y = ( 4 x2 −e2 x ¿ sin 3 x
Now, y’ = d
dx (4 x2−e2 x )sin 3 x = sin 3 x d
dx ( 4 x2−e2 x ) + ( 4 x2 −e2 x ) d
dx (sin 3 x )
= sin 3 x∗
{( d
dx 4 x2
)− ( d
dx e2 x
) }+ ( 4 x2−e2 x )∗3 cos (3 x)
= sin 3 x∗( 8 x−2 e2 x)+ ( 4 x2−e2 x ) ∗3 cos (3 x)
= ( 8 x−2 e2 x ) sin 3 x +3 ( 4 x2−e2 x ) cos 3 x.
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
4CALCULUS
Answer 2.
Part a
The angular displacement is θ radians. The equation of spoke of a wheel is –
θ = 0.5t4– t3, where ‘t’ is the time in seconds.
The angular velocity after 2 seconds is, dθ
dt ∨¿t=2=[ ( 0.5∗4 t4−1−3 t3−1 ) ]∨¿ ¿t=2= [(2t3 – 3t2)] |
t=2
= (2*8-3*4) = (16-12) = 4 radian/sec.
Part b
The angular acceleration is, d2 θ
d t2 = d
dt ( d θ
dt ) = d
dt ( 2 t3−3 t2 ) =¿ radian/sec2.
The angular acceleration after 3 seconds is = 6*3(3-1) radian/sec2 = 6*6 radian/sec2 = 36
radian/sec2.
Part c
Angular acceleration is 0.
Hence, 6 t ( t−1 ) =0
Or, t = 0, 1.
Therefore, at the starting of moving of spoke, the angular acceleration is 0. Also, after 1
second of the angular displacement, the angular acceleration is 0.
Answer 3.
The length and width of metal sheet is 120 mm and 75 mm respectively. Equal squares of
side x are cut from each of the corners. The remaining flaps are then folded upwards to form
an open-ended box.
Part a
Figure 1: Rectangular metal sheet
Answer 2.
Part a
The angular displacement is θ radians. The equation of spoke of a wheel is –
θ = 0.5t4– t3, where ‘t’ is the time in seconds.
The angular velocity after 2 seconds is, dθ
dt ∨¿t=2=[ ( 0.5∗4 t4−1−3 t3−1 ) ]∨¿ ¿t=2= [(2t3 – 3t2)] |
t=2
= (2*8-3*4) = (16-12) = 4 radian/sec.
Part b
The angular acceleration is, d2 θ
d t2 = d
dt ( d θ
dt ) = d
dt ( 2 t3−3 t2 ) =¿ radian/sec2.
The angular acceleration after 3 seconds is = 6*3(3-1) radian/sec2 = 6*6 radian/sec2 = 36
radian/sec2.
Part c
Angular acceleration is 0.
Hence, 6 t ( t−1 ) =0
Or, t = 0, 1.
Therefore, at the starting of moving of spoke, the angular acceleration is 0. Also, after 1
second of the angular displacement, the angular acceleration is 0.
Answer 3.
The length and width of metal sheet is 120 mm and 75 mm respectively. Equal squares of
side x are cut from each of the corners. The remaining flaps are then folded upwards to form
an open-ended box.
Part a
Figure 1: Rectangular metal sheet
5CALCULUS
120 mm
x mm x mm
1st square 2nd square
First Flip
x mm x mm
75 mm Fourth Second
Flip Base of the box Flip
x mm x mm
Third Flip
3rd square 4th square
x mm x mm
Part b
The length of the base of the box will be (120-x-x) mm = (120-2x) mm.
The width of the base of the box will be (75-x-x) mm = (75-2x) mm.
The height of the box = x mm.
120 mm
x mm x mm
1st square 2nd square
First Flip
x mm x mm
75 mm Fourth Second
Flip Base of the box Flip
x mm x mm
Third Flip
3rd square 4th square
x mm x mm
Part b
The length of the base of the box will be (120-x-x) mm = (120-2x) mm.
The width of the base of the box will be (75-x-x) mm = (75-2x) mm.
The height of the box = x mm.
6CALCULUS
Therefore, the volume of the box = length*width*height
= (120-2x) mm. * (75-2x) mm. * x mm.
= x*(9000 -150x -240x+4x2) mm3.
= x*(9000 - 390x+4x2) mm3. = (9000x – 390x2 + 4x3) mm3.
Part c
We must find the value of x for which volume (V) is maximum.
V = 9000x – 390x2 + 4x3
or, dV
dx = d
dx ( 9000 x−390 x2+4 x3 )= d
dx ( 9000 x )− d
dx ( 390 x2 ) + d
dx ( 4 x3)
or, dV
dx =( 9000−780 x +12 x2 )
The first derivative should be 0. Hence, dV
dx =0
Hence, (9000-780x+12x2) = 0,
or, x = 50, 15 (solving the quadratic equation).
The value of x cannot be 50 as in this case the width of base of the box (75-2x) will be
negative. It is impossible and absurd. So, we reject x=50 and accept x=15.
The volume of the open-ended box is maximum when x=15 mm. It shows that the volume of
the box is (9000*15 – 390* 152 + 4* 153) mm3 = (135000 –87750 + 13500) mm3= 60750
mm3.
Answer 4.
Part a
∫(5 x2 + √ x− 4
x2 ¿) dx=∫ 5 x2 dx+¿∫ x
1
2 dx ¿ ¿ -∫ 4
x2 dx
=( 5
( 2+ 1 ) x2+1
+
1
( 1
2 )+1
x (1
2 )+1
- 4
(−2+1) x−2+1
)
= ( 5
3 x3+
1
3
2
x
3
2
– 4
( −1 ) x−1
)= ( 5
3 x3 + 2
3 x
3
2 +4x−1) = ( 5 x3
3 + 2 x √ x
3 + 4
x ¿ .
Therefore, the volume of the box = length*width*height
= (120-2x) mm. * (75-2x) mm. * x mm.
= x*(9000 -150x -240x+4x2) mm3.
= x*(9000 - 390x+4x2) mm3. = (9000x – 390x2 + 4x3) mm3.
Part c
We must find the value of x for which volume (V) is maximum.
V = 9000x – 390x2 + 4x3
or, dV
dx = d
dx ( 9000 x−390 x2+4 x3 )= d
dx ( 9000 x )− d
dx ( 390 x2 ) + d
dx ( 4 x3)
or, dV
dx =( 9000−780 x +12 x2 )
The first derivative should be 0. Hence, dV
dx =0
Hence, (9000-780x+12x2) = 0,
or, x = 50, 15 (solving the quadratic equation).
The value of x cannot be 50 as in this case the width of base of the box (75-2x) will be
negative. It is impossible and absurd. So, we reject x=50 and accept x=15.
The volume of the open-ended box is maximum when x=15 mm. It shows that the volume of
the box is (9000*15 – 390* 152 + 4* 153) mm3 = (135000 –87750 + 13500) mm3= 60750
mm3.
Answer 4.
Part a
∫(5 x2 + √ x− 4
x2 ¿) dx=∫ 5 x2 dx+¿∫ x
1
2 dx ¿ ¿ -∫ 4
x2 dx
=( 5
( 2+ 1 ) x2+1
+
1
( 1
2 )+1
x (1
2 )+1
- 4
(−2+1) x−2+1
)
= ( 5
3 x3+
1
3
2
x
3
2
– 4
( −1 ) x−1
)= ( 5
3 x3 + 2
3 x
3
2 +4x−1) = ( 5 x3
3 + 2 x √ x
3 + 4
x ¿ .
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
7CALCULUS
Part b
∫¿ ¿= ∫cos ( x
2 )dx - ∫sin ( 3 x
2 )dx= 2 sin ( x
2 )- (−2
3 )cos (3 x
2 )
=2 sin ( x
2 )+ 2
3 cos ( 3 x
2 ).
Part c
∫
1
5
s
√ s2+ 4 ds
Let, √ (s2 +4) = k, or, s2 + 4 = k2, or, s2 = k2- 4,
or, 2sds = 2kdk, or, dk = 2 sds
2 k =sds.
Now, ∫
1
5
s
√ s2+ 4 ds = ∫
1
5 ( s∗s)
k dk =∫
1
5
s2
k dk = ∫
1
5 ( k2−4)
k dk = ∫
1
5
(k dk + 4
k ¿ dk )¿
= ∫
1
5
k dk +∫
1
5
4
k dk =¿+4*¿
= ( 25
2 −1
2 ¿+4∗(log5−log 1) = [ 24
2 +4∗log(5
1 ¿)¿ = (12 + 4*log 5) = (12+4*0.69897) = (12+
2.79588) = 14.79588.
Answer 5.
Part a
The area bounded by the curve y ¿ 1
x between x = 2 and x = 6 is –
∫
a
b
y dx = ∫
2
6
( 1
x ) dx= ¿ = (log6 – log2) = log ( 6
2 ¿ = log3 = 0.778 (approximately).
Part b
Figure 2: The Sine Curvein the range 0 to 2π
Part b
∫¿ ¿= ∫cos ( x
2 )dx - ∫sin ( 3 x
2 )dx= 2 sin ( x
2 )- (−2
3 )cos (3 x
2 )
=2 sin ( x
2 )+ 2
3 cos ( 3 x
2 ).
Part c
∫
1
5
s
√ s2+ 4 ds
Let, √ (s2 +4) = k, or, s2 + 4 = k2, or, s2 = k2- 4,
or, 2sds = 2kdk, or, dk = 2 sds
2 k =sds.
Now, ∫
1
5
s
√ s2+ 4 ds = ∫
1
5 ( s∗s)
k dk =∫
1
5
s2
k dk = ∫
1
5 ( k2−4)
k dk = ∫
1
5
(k dk + 4
k ¿ dk )¿
= ∫
1
5
k dk +∫
1
5
4
k dk =¿+4*¿
= ( 25
2 −1
2 ¿+4∗(log5−log 1) = [ 24
2 +4∗log(5
1 ¿)¿ = (12 + 4*log 5) = (12+4*0.69897) = (12+
2.79588) = 14.79588.
Answer 5.
Part a
The area bounded by the curve y ¿ 1
x between x = 2 and x = 6 is –
∫
a
b
y dx = ∫
2
6
( 1
x ) dx= ¿ = (log6 – log2) = log ( 6
2 ¿ = log3 = 0.778 (approximately).
Part b
Figure 2: The Sine Curvein the range 0 to 2π
8CALCULUS
0 (π/6) (π/3) (π/2) (2π/3) (5π/6) π (7π/6) (4π/3) (3π/2) (5π/3) (11π/6) 2π
-1.5
-1
-0.5
0
0.5
1
1.5
Sine Value
Radians
Sine Value
The area under the sine curve is –
∫
0
1.7 π
y dx = ∫
0
1.7 π
sin x dx = [−cos x ]x=0
x=1.7 π = [(−cos 1.7 π ¿−(−cos 0)¿ = ¿) = (1-(-0.30901699)) =
(1+0.30901699) = 1.30901699.
Answer 6.
The instantaneous rate of change of a population = 50 t2 −100t
3
2
It is measured in individuals per year and the initial population is 25000 then,
Part a
The change in t years = ∫
0
t
(50 t2−100 t
3
2 )dt = ∫
0
t
50 t2 dt - ∫
0
t
100 t
3
2 dt
= ( 50
( 2+1 ) t2+1
)–
( 100
( 3
2 +1 ) t
3
2 + 1
)
= ( 50
( 2+1 ) t2+1)t =0
t =t
- ( 100
( 3
2 +1 ) t
3
2 +1
)
t=0
t=t
= ( 50
3 t3)t =0
t =t
- ( 100∗2
5 t
5
2 )t=0
t=t
= ( 50
3 t3−0 ¿−( 40 t
5
2 −0)
0 (π/6) (π/3) (π/2) (2π/3) (5π/6) π (7π/6) (4π/3) (3π/2) (5π/3) (11π/6) 2π
-1.5
-1
-0.5
0
0.5
1
1.5
Sine Value
Radians
Sine Value
The area under the sine curve is –
∫
0
1.7 π
y dx = ∫
0
1.7 π
sin x dx = [−cos x ]x=0
x=1.7 π = [(−cos 1.7 π ¿−(−cos 0)¿ = ¿) = (1-(-0.30901699)) =
(1+0.30901699) = 1.30901699.
Answer 6.
The instantaneous rate of change of a population = 50 t2 −100t
3
2
It is measured in individuals per year and the initial population is 25000 then,
Part a
The change in t years = ∫
0
t
(50 t2−100 t
3
2 )dt = ∫
0
t
50 t2 dt - ∫
0
t
100 t
3
2 dt
= ( 50
( 2+1 ) t2+1
)–
( 100
( 3
2 +1 ) t
3
2 + 1
)
= ( 50
( 2+1 ) t2+1)t =0
t =t
- ( 100
( 3
2 +1 ) t
3
2 +1
)
t=0
t=t
= ( 50
3 t3)t =0
t =t
- ( 100∗2
5 t
5
2 )t=0
t=t
= ( 50
3 t3−0 ¿−( 40 t
5
2 −0)
9CALCULUS
= ( 50
3 t3- 40 t
5
2 ¿
Therefore, the population after ‘t’ years is – (initial population + total population)
= (25000 + ( 50
3 t3
- 40 t
5
2 ¿) = (25000 + 50
3 t3
- 40 t
5
2 ¿.
Part b
The increased population after 25 years = ( 50
3 ∗253−40∗25
5
2 ¿ = (260417 – 125000)
= 135417
Hence, the total population after 25 years would be = (25000 + 135417) = 160417.
Answer 7
Integral by parts:
∫5 x cos ( 4 x ) dx = [5 x∫cos ( 4 x ) dx- ∫ ( cos 4 x ) dx . d
dx ( 5 x ) dx]
= [5x* sin ( 4 x)
4 ¿ - ∫¿ ¿ = 5 x sin (4 x )
4 −20∫sin (4 x ) dx
= 5 x sin ( 4 x )
4 −¿( −20
( 4+ 1 ) cos (4 x ) ¿
= ( 5 x sin( 4 x)
4 +4 cos 4 x ).
= ( 50
3 t3- 40 t
5
2 ¿
Therefore, the population after ‘t’ years is – (initial population + total population)
= (25000 + ( 50
3 t3
- 40 t
5
2 ¿) = (25000 + 50
3 t3
- 40 t
5
2 ¿.
Part b
The increased population after 25 years = ( 50
3 ∗253−40∗25
5
2 ¿ = (260417 – 125000)
= 135417
Hence, the total population after 25 years would be = (25000 + 135417) = 160417.
Answer 7
Integral by parts:
∫5 x cos ( 4 x ) dx = [5 x∫cos ( 4 x ) dx- ∫ ( cos 4 x ) dx . d
dx ( 5 x ) dx]
= [5x* sin ( 4 x)
4 ¿ - ∫¿ ¿ = 5 x sin (4 x )
4 −20∫sin (4 x ) dx
= 5 x sin ( 4 x )
4 −¿( −20
( 4+ 1 ) cos (4 x ) ¿
= ( 5 x sin( 4 x)
4 +4 cos 4 x ).
1 out of 10
Related Documents
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.