Solving Calculus Problems and Linear Algebra Equations

Verified

Added on  2023/05/29

|4
|1237
|294
AI Summary
This text provides solutions to calculus and linear algebra problems, including integration, distance and angle calculations, and verification of the Cauchy-Schwarz inequality. It also includes an example of verifying the parallelogram law and solving a system of linear equations.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
3. (a)
f , g =
a
b
f ( x ) g ( x ) dx
¿
1
1
x2 ex dx
integrating by parts we have ,letf =x2 , g'=e x f ' =2 x ,
g=ex .

1
1
x2 e x dx =x2 e x2 x ex dx .
solving for 2 x ex dx
2 x e x dx=2 x ex2e x dx .
solving for ex dx=e x .
pluggingthe parts we have

1
1
x2 e x dx =x2 e x2 x ex2 e x ¿1
1
¿ e5 e1=0.8788
(b)
we define the length of a vector f by
f = f , f
which is simply thenorm .
This can be evaluated ¿
¿
1
1
x2 x2 dx=
1
1
x4 dx
¿ 1
5 x5 ¿1
1
¿ 1
5 (1
5 )
¿ 0.632 5
(c) the distance between f and g can be obtained from
d ( f , g )=f g= f g , f g .
we need ¿ plugthe f g functionsintegrate . i. e
d ( f , g )=x2e x
= x2ex , x2ex
¿
1
1
( x2e x ) ( x2ex ) dx

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿
1
1
(x ¿¿ 42 x2 ex +e2 x )dx ¿
¿ [2 x2 ex +4 x e x+ 4 e x ex
2 + x5
5 ]1
1
¿ 1.5064
(d) The angle between f and g can be calculated from the formula
cos θ= f , g
f g
now we need ¿ the|value of gsince f , g f have been calculated
¿ ab above .
g= g , g =
1
1
e x e x dx=
1
1
e2 x dx .
we now let u=2 x dx=1
2 du
g= 1
2 eu du= 1
2 eu= [ 1
2 e2 x
]1
1
=1.90442
Now cos θ=¿ 0.87888
0.6325 ×1.90442 θ=cos1
( 0.87888
0.6325 ×1.90442 )=43.14 ° ¿
4.
¿ verify the Cauchys chwarz inequality , we need ¿ show that
f ( x ) =cos xg ( x ) =sin x where f , g =
0
π
4
cos x sin x dx
satisfies f , g 2 f , f g , g . Lets start by evaluating the LHS i . e
f , g 2
= (
0
π
4
cos x sin x dx )
2
let u=sin x dx= 1
cos x du u du= u2
2 =( [ sin2 x
2 ] 0
π
4
)
2
=0.0625
f , f =
0
π
4
cos x cos x dx=
0
π
4
cos2 x dx which can be solved using thereduction formula ¿ get

0
π
4
cos2 xdx= [ cos x sin x
2 + x
2 ]0
π
4 =0.8017
Document Page
g , g =
0
π
4
sin x sin x dx=
0
π
4
sin2 xdx which can be solved using thereduction formula ¿ get

0
π
4
sin2 xdx =[ cos x sin x
2 + x
2 ]0
π
4 =0.3777 .
Now we have
0.0625<0.8017 × 0.3777=0.3028
thus satsfying theinequality
5. To prove the parallelogram law
u+v2 +uv2=2u2 +2 v2
we can expandu+v2= u+v ,u+ v =u 2 + u , v + u , v +v2 =u2+ 2 u , v +v2 . ( i )
uv
2= uv , uv =u
2 u , v u , v +v
2=u
22 u , v +v
2 . ( ii )
Now adding ( i ) ( ii ) we have
u+v2 +uv2=u2 +2 u , v +v2 +u22 u , v +v2 =2u2 +2 v2
8. B= { ( 7,24,0,0 ) , ( 0,0,1,1 ) , ( 0,0,1 ,2 ) }
Take u1= ( 7,24,0,0 ) ,u 2= ( 0,0,1,1 ) ,u 3= ( 0,0,1,2 )
let v 1=u 1 , e 1= v 1
v 1 = ( 7,24,0,0 )
72 +242+ 0+0 = ( 7
25 , 24
25 , 0,0 )
v 2=u 2 u 2 , e 1 e 1= ( 0,0,1,1 ) (0 × ( 7
25 , 24
25 , 0,0 ) )= ( 0,0,1,1 )
e 2= v 2
v 2= ( 0,0,1,1 )
0+0+1+1 = (0,0 , 1
2 , 1
2 )
v 3=u 3 u3 ,e 1 e 1 u 3 , e 2 e 2= ( 0,0,1 ,2 ) 0 ( 0,0,1 ,2 ) , (0,0 , 1
2 , 1
2 ) (0,0 , 1
2 , 1
2 )=(0,0 ,
e 3= v 3
v 3= (0,0 , 3
2 , 3
2 )
0+ 0+( 3
2 )2
+ (3
2 )2 =(0,0 , 2
2 , 2
2 )
Document Page
B' = {( 7
25 , 24
25 , 0,0 ) , ( 0,0 , 1
2 , 1
2 ) , ( 0,0 , 2
2 , 2
2 ) }
9. X1
( 3
5
4
5
0 ) + X2
( 4
5
3
5
0 ) + X2 ( 0
0
1 )= ( 10
25
5 ) we can find the values of X1 , X 2 , X3
3
5 X1 4
5 X2+ 0 X3=10 . ( i )
4
5 X1 + 3
5 X2 +0 X 3=25 ..(ii)
X3 =5 (iii)
¿ ( i ) ( ii ) we have
3 X14 X2 =50 , 4 X1 +3 X2 =125 , solving X1=26 , X2=7 hence XB =
[ 26
7
5 ]
References:
Seymour (1976) .Schaum’s outline Linear Algebra 4th ed. Mac-GrawHill
Gilbert s.(1993) Introduction to linear algebra 2nd ed.
Sheldon A.(1995). Linear Algebra done right. Springer
Steven R.(1992).Advanced Linear algebra. Springer.
1 out of 4
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]