Differentiation of Functions

Verified

Added on  2023/04/07

|11
|2037
|430
AI Summary
This document explains how to differentiate functions and find their derivatives using the given graphs. It provides step-by-step instructions and examples for estimating the derivatives of h(x) at x=1 and x=3.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Calculus
Name:
Institution:
15th March 2019
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question 1:
(a) State two formulas for the derivative
Solution
The first formula is the power Rule of Derivatives. According to this formula we
have;
d
dx [ xn ]=n xn1
The second formula of the derivative is by the limit. According to this formula we
have;
f ' ( x ) = d
dx [ f (x) ] lim
h 0
f ( x +h ) f (x )
h
(b) For f ( x )= 3 x
2x find f ' ( x ) using the limit definition of a derivative
Solution
The limit definition of the derivative states that for a function f(x) its derivative equals
f ' ( x )=lim
h 0
f ( x+h )f (x)
h
f ' ( x ) =lim
h 0
1
h ( 3 (x+h)
2x +h 3 x
2x )
¿ lim
h 0
1
h ( ( 3 x+3 h ) ( 2x ) 3 x(2x+ h)
( 2x+h)(2x) )
¿ lim
h 0
1
h ( ( 6 x +6 h3 x23 xh ) (6 x 3 x2 +3 xh)
(2x+h)(2x ) )
¿ lim
h 0
1
h ( 6 h6 xh
(2x+h)(2x) )
¿ lim
h 0
6 ( 1x
(2x+ h)(2x) )
¿ 6
(x2)( x2)
¿ 6
( x2)2
Document Page
Question 2:
Differentiate the following:
(a) y=7 t 3 +15 et
Solution
y' = dy
dx = dy
dx [ 7 t3 +15 et ]
¿ 7. dy
dt [ t3 ] +15. dy
dt [ et ] =73 t2 +15 et
¿ 21 t2 +15 et
(b) f ( x ) = ( ln ( 3 ) ) x
Solution
f ' ( x )= d
dx [ ( ln (3 ) )x
]
¿ d
dx ¿
¿ e¿¿ ¿
¿¿
¿ 1¿
¿¿
(c) g ( x ) =e9 + xe
Solution
g' ( x)= d
dx [ e9 + xe ]
¿ d
dx [ e9 ]+ d
dx [ xe ]
¿ 0+ d
dx [ xe ]
¿ d
dx [ xe ]
¿ e xe1
Document Page
(d) h ( x ) =esin ( 5 x ) 4 x
Solution
h' ( x )= d
dx [ esin (5 x )4 x ]
¿ d
dx [ esin ( 5 x ) ]4 . d
dx [ x ]
¿ esin ( 5 x ) d
dx [ sin (5 x ) ]4 . 1
2 [ x
1
2 1
]
¿ cos (5 x) d
dx [5 x ] . esin ( 5 x ) 2
x
¿ 5 d
dx [ x ] .cos (5 x)esin ( 5 x ) 2
x
¿ 5 cos(5 x )esin ( 5 x ) 2
x
(e) d
dx [ ( 2 x5+ 2 ln x )
15
]
Solution
¿ d
dx [ ( 2 x5+2 ln x )15
]
¿ 15 ( 2 x5 +2 ln x ) 14
. d
dx [ ( 2 x5+ 2 ln x ) ]
¿ 15 ( 2 . d
dx [ ln x ] +2 . d
dx [ 2 x5 ] ) ( 2 x5 +2 ln x )
14
¿ 15 ( 2 . 1
x + 2. 5 x4
) ( 2 x5+ 2 ln x )
14
¿ 15 (10 x5 + 2
x ) ( 2 x5 +2 ln x )14
¿ ( 150 x5 +30 ) ( 2 x5+ 2 ln x )
14
x
(f) d
dx [ tan ( e6 x ) ]
Solution
¿ d
dx [ tan ( e6 x ) ]
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿ sec2 ( e6 x ) . d
dx [ e6 x ]
¿ e6 x . d
dx [ 6 x ] . sec2 ( e6 x )
¿ 6 . d
dx [ x ] . e6 x sec2 ( e6 x )
¿ 6 . 1. e6 x sec2 ( e6 x )
¿ 6 e6 x sec2 ( e6 x )
(g) z (t )= t2+ 5t +2
t+7
Solution
z' ( t )= d
dt [ t2 +5 t+ 2
t +7 ]
¿
d
dt [ t2+ 5t +2 ] . ( t +7 ) ( t2+5 t +2 ) . d
dt [ t+7 ]
( t +7 ) 2
¿ ( 2t +5 ) . ( t +7 ) ( t2+5 t +2 ) .1
( t+7 ) 2
¿ ( 2t2 +5 t+14 t +35 ) (t2+5 t +2 )
( t+ 7 )2
¿ ( t2 +14 t +33 )
( t+ 7 ) 2
¿ t2 +14 t +33
( t+7 ) 2
(h) y= e6 x
x2+3
Solution
y' = d
dx [ e6 x
x2+3 ]
¿
d
dx [ e6 x ] . ( x2+3 )e6 x . d
dx [ x2 +3 ]
( x2 +3 ) 2
Document Page
¿
6 . d
dx [ x ] . ( x2+ 3 ) e6 x ( 2 x+0 ) e6 x
( x2 +3 )
2
¿ 6 ( x2+3 ) e6 x2 x e6 x
( x2+3 )2
(i) r ( θ ) =e6 cos θ
Solution
r' ( θ )= d
[ e6 cosθ ]
¿ e6 cos θ . d
[6 cos θ ]
¿ 6 . d
[ cos θ ] e6 cos θ
¿ 6 . ¿
¿6 e6 cos θ sin θ
Question 3:
Consider function f ( x )=ex2
(a) Find f ' ( x )
Solution
f ' ( x )= d
dx [ e x2
]
¿ e x2
. d
dx [x2 ]
¿ (d
dx [ x2 ] )ex2
¿ (2 x ) e x2
¿2 x ex2
(b) Find f ' ' ( x )
Solution
Document Page
f ' ' ( x ) = d
dx [ 2 x ex2
]
¿2 . d
dx [ x ex2
]
¿2 ( d
dx [ x ] . ex2
+ x . d
dx [ ex2
] )
¿2 ( e x2
+ ex2
. d
dx [ x2 ] . x )
¿2 ( 2 x2 ex2
+e x2
)
¿2 ( ex2
2 x2 e x2
)
Question 4:
Find the equation of the tangent line to the graph at the point z = 2 for
g ( z )= 3 z2
5 z2 +2 z
Solution
g' ( z ) = d
dz [ 3 z2
5 z2 +2 z ]
¿ 3 . d
dz [ z2
5 z2+ 2 z ]
¿ 3 .
d
dz [ z2 ] . ( 5 z2+2 z )z2 . d
dz [ 5 z2 +2 z ]
( 5 z2 +2 z )
2
¿ 3 . 2 z . ( 5 z2+ 2 z )z2 . ( 10 z +2 )
( 5 z2+ 2 z )2
¿ 6 z . ( 5 z2+2 z )3 z2 . ( 10 z +2 )
( 5 z2 +2 z ) 2
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
¿ 30 z3 +12 z2 30 z3 6 z2
( 5 z2 +2 z ) 2
¿ 6 z2
( 5 z2 +2 z )2
¿ 6
( 5 z +2 )2
At z = 2 we have;
g' ( 2 ) = 6
( 52+2 ) 2 = 6
122 = 1
24
g ( 2 ) = 3(2)2
5(2)2+ 2(2)= 12
24 =0.5
h0.5
z2 = 1
24
24 ( h0.5 ) =z2
24 h12=z2
24 h=z2+12
h ( z ) = 1
24 z+ 5
12
Thus the equation of the tangent line is h ( z ) = 1
24 z+ 5
12
Question 5:
Suppose f and g are differentiable functions with the values shown in the table below. For each
of the following function find h' (7)
x f (x) g(x ) f ' ( x) g' (x)
7 7 4 5 -2
Document Page
(a) h ( x ) =3 f ( x ) 2 g(x )
Solution
h' ( x ) =3 f ' ( x ) 2 g'( x )
h' ( 7 ) =3 ( 5 ) 2 ( 2 ) =15+4=19
(b) h ( x )=f ( x ) g( x)
Solution
h' ( x )=f ' ( x ) g' ( x )
h' ( 7 )=5(2 ) =10
(c) h ( x )= f ( x )
g ( x )
Solution
h' ( 7 )= f ' ( 7 )
g' (7 ) = 5
2=2.5
(d) h ( x )= 3+f ( x )
1g ( x )
Solution
h' ( 7 ) = 3+ f ' ( 7 )
1g' ( 7 ) = 3+5
1(2)= 8
3
Question 6:
Let h ( x ) =f ( x ) g( x), and graphs of f ( x ) and g ( x ) are provided below. Using the graphs
estimate the following derivatives.
(a) h' ( 1 )
Solution
If h ( x )=f ( x ) g(x), then h' ( x )=f ' ( x ) g ( x )+ f ( x ) g' ( x )
h' ( 1 )=f ' ( 1 ) g ( 1 ) + f ( 1 ) g' (1)
Document Page
The values of the functions must be
f ( 1 ) =2g ( 1 )=3
f ' ( 1 )= y
x = 2
1 =2
g' ( 1 ) = y
x =1
1 =1
h' ( 1 ) =23+2( 1 ) =62=4
(b) h' ( 3 )
Solution
If h ( x ) =f ( x ) g(x), then h' ( x )=f ' ( x ) g ( x )+ f ( x ) g' ( x )
h' ( 3 )=f ' ( 3 ) g ( 3 ) + f ( 3 ) g' (3)
The values of the functions must be
f ( 3 )=2g ( 3 ) =1
f ' ( 3 ) = y
x = 2
3 =2
3
g' (3 )= y
x =1
3 =1
3
h' ( 3 )=2
3 1+2(1
3 )=2
3 2
3 =4
3
(c) For which value of x on the interval (0, 4) derivative of h(x) does not exist? Why?
Solution
For the value of x = 0, the derivative of h(x) does not exist because the tangent at x = 0 is
vertical and therefore its slope which the value of the derivative at x =0 is undefined.
Question 7:
Suppose f ( 3 )=4 and f ' ( 3 ) =9. Find the derivative of the following functions.
(a) g ( x ) = f ( x )
Solution
g ( x )= f (x )=f ( x)1 /2
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
g' ( x ) =1
2 f (x )1/ 2 ( f ( x )1/ 2 )'
Substituting x = 3 into the above we obtain;
g' (3 )= 1
2 f (3)1/ 2 ( f (3)1 /2 )'
= 1
24
1
2 9
1
2 =
1
21
2 3= 3
4
(b) g ( x ) = 1
4 f (x)
Solution
g ( x )= 1
4 f ( x)
g' ( x ) = f ' (x )
4 ( f (x) ) 2
Substituting x = 3 into the above we obtain;
g' (3 )= f ' (3)
4 ( f (3) )2 = 9
442 = 9
64
chevron_up_icon
1 out of 11
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]