Differentiation to determine rate of change when voltage is given

Verified

Added on  2023/01/09

|12
|910
|100
AI Summary
This document explains how to use differentiation to determine the rate of change when voltage is given in calculus. It provides step-by-step solutions and examples for different scenarios. The document also includes tasks related to integration and finding maxima or minima points.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Calculus

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Table of Contents
TASK 1............................................................................................................................................1
Differentiation to determine rate of change when voltage is given.............................................1
TASK 2............................................................................................................................................4
PART 1........................................................................................................................................4
PART 2........................................................................................................................................5
TASK 3............................................................................................................................................6
PART 1........................................................................................................................................6
PART 2........................................................................................................................................6
TASK 4............................................................................................................................................7
PART 1........................................................................................................................................7
PART 2........................................................................................................................................8
Document Page
Document Page
TASK 1
Differentiation to determine rate of change when voltage is given
(a) v = (t2 + 6)2
r = dv/dt
= d (t2 + 6)2
dt
= 2 (t2 + 6). 2t
= 4t (t2 + 6)
at t = 5 sec, rate of change will be
r = 4 x 5 (52 + 6)
= 20 (31) = 620 units
(b) v = (3t3 – 4t + 6)3
r = dv/dt
= d (3t3 – 4t + 6)3
dt
= 3 (3t3 – 4t + 6)2. (9t2 – 4)
= 3(9t2 – 4) (3t3 – 4t + 6)2
at t = 5 sec, rate of change will be
r = 3(9.52 – 4) (3.53 – 4.5+ 6)2
= 3 (221) (361)2
8.6 x 107 units
1

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
(c) v = loge (2t)
r = dv/dt
= d [loge (2t)]
dt
= 1 . 2 = 1
2t t
at t = 5 sec, rate of change will be
r = 1/5 = 0.2 units
(d) v = 4 e-0.5t
r = dv/dt
= d (4 e-0.5t)
dt
= 4 (-0.5) e-0.5t
= -2 e-0.5t
at t = 5 sec, rate of change will be
r = -2 e-0.5x5
= -2 e-2.5
-0.16 units
(e) v = sin (2t3 + 4t – 2)
r = dv/dt
= d [sin (2t3 + 4t – 2)]
dt
= cos (2t3 + 4t – 2). (6t2 + 4)
at t = 5 sec, rate of change will be
r = cos (2.53 + 4.5 – 2). (6.52 + 4)
= cos (268) . 154
-5.37 units
2
Document Page
(f) v = cos (3t4 – 5t + 4)
r = dv/dt
= d [cos (3t4 – 5t + 4)]
dt
= -sin (3t4 – 5t + 4). (12t3 – 5)
at t = 5 sec, rate of change will be
r = -sin (3.54 – 5.5 + 4). (12.53 – 5)
= -sin (604) . (1495)
1343.7 units
3
Document Page
TASK 2
PART 1
i = E e-t/RC
R
i.dt = E e-t/RC
R
Let -t/RC = x
dt = - RC. dx
so,
I = -RC . E ex dx
R
= -EC .ex
= -EC e-t/RC
at, E = 10V C = 1.0μF and R = 1.0MΏ and t = 0 sec
then,
I = -10 x 1.0 e-t/1.0 x 1.0
= -10 units
4

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
PART 2
Given,
iL.dt = 1 cos(100t).dt
L
= 1 [sin(100t)]
100 L
at L = 10mH and t = 0.9sec
iL = 1/10 sin (100 x 0.9)
= 0.1 sin (90)
= 0.1 unit
5
Document Page
TASK 3
PART 1
Given,
4
y = 2 (1 – e-t). dt
= [ t + e-t]24
= [ 4 – 2 + e-4 – e-2]
= 2 + 0.018 – 0.135
1.9 sq. unit
PART 2
Given,
4
y = 2 (– e-t). dt
= [ e-t]24
= [ e-4 – e-2]
= 0.018 – 0.135
-0.12 sq. unit
6
Document Page
TASK 4
PART 1
Given
y = 3x2 – 5x
Plotting the graph –
differentiate with respect to x
dy = 6x – 5
dx
Maxima or minima point can find out at dy/dx = 0
6x – 5 = 0
x = 5/6
so, at x = 5/6 = 0.8
y(5/6) = 3(0.8)2 – 5(0.8)
= -2 (approx.)
so, maxima or minima coordinates of given equation is (0,0) and (0, -2)
7

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
PART 2
Given,
y = x3 – 4x + 6
differentiate with respect to x
dy = 3x2 – 4x
dx
Maxima or minima point can find out at dy/dx = 0
3x2 – 4x = 0
x (3x – 4) = 0
x = 0, 4/3
so, at x = 0
y(0) = (0)3 – 4(0) + 6
= 6
at x = 4/3 = 1.3
y(1.3) = (1.3)3 – 4(1.3) + 6
= 3 (approx.)
so, at x = 0 the given function will get its minimum value.
8
Document Page
9
1 out of 12
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]