ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Calculus Questions - Desklib

Verified

Added on  2023/06/17

|5
|1672
|442
AI Summary
This article contains solutions to calculus questions on topics like derivatives, range, and strictly decreasing interval. The solutions are explained step-by-step for better understanding. The article is relevant for students studying calculus in college or university.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Calculus Questions
Table of Contents
Table of Contents.............................................................................................................................1
QUESTION 1..................................................................................................................................2
(a).................................................................................................................................................2
(b).................................................................................................................................................2
(c).................................................................................................................................................3
(d).................................................................................................................................................3
QUESTION 2..................................................................................................................................4
QUESTION 3..................................................................................................................................4
(a) Range......................................................................................................................................4
(b) Strictly decreasing interval.....................................................................................................5
1

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
QUESTION 1
(a)
f(x) = (x9.5 – 3 + 1) (5 – [1 / (x2+1)])
Solution
f(x) = (x9.5 – 3 + 1) (5 – [1 / (x2+1)])
= 5 x6.5 - x6.5 / x3 + 5 – 1/x3
= 5 x6.5 – x3.5 + 5 – 1/x3
First derivative = f’(x)
f’(x) = 32.5 x5.5 – 3.5 x2.5 + 3x-4
Second derivative = f ’’(x) = 178.75 x4.5 – 8.75 x1.5 - 12 x-5
(b)
f(x) = exp √[x2 – (2/x) ]
Solution
f(x) = exp √[x2 – (2/x) ]
Let √[x2 – (2/x) ] = w
d/dx (ew) = dw/dx*ew
f’(x) = d/dx (√[x2 – (2/x) ]) * exp √[x2 – (2/x) ]
Again d/dx (√x) = 0.5 (x)-0.5
Applying this chain rule:
d/dx (√[x2 – (2/x) ]) = (2x + 2x-2)0.5 * [x2 – (2/x) ]-0.5
Thus f’(x) =(2x + 2x-2)0.5 * [x2 – (2/x) ]-0.5 * exp √[x2 – (2/x) ]
First derivative = 0.5*[x2 – (2/x) ]-0.5)* exp √[x2 – (2/x) ] * [2x + 2x-2]
Second derivative =
f’’(x) = d/dx [(0.5) (x2 –2x-1)-0.5 exp √[x2 – (2/x) ] * [2x + 2x-2]]
Let u = [(0.5) (x2 –2x-1)-0.5 * [2x + 2x-2] ]
On simplifying we have u = 2x3 + 1 -2 – 2x-3
du/dx = 3x2 + 6x-4
Let v = exp √[x2 – (2/x) ]
dv/dx = 1 / {2 *√ [x2 – (2/x) ] } * (2x + 2x-2) exp √[x2 – (2/x) ]
so f ’’(x) = u dv/dx + v* du/dx
2
Document Page
On substituting values, we have:
Second derivative:
f ’’(x) = [(0.5) (x2 –2x-1)* [2x + 2x-2] ] 1 / {2 *√ [x2 – (2/x) ] } * (2x + 2x-2) exp √[x2 – (2/x) ]
+ exp √[x2 – (2/x) ] [3x2 + 6x-4 ]
(c)
f(x) = [1/ 5x +4] exp (3 – 3x2)
Solution
First derivative:
Let [1/ 5x +4] = u and exp (3 – 3x2) = v
d (uv) = uv’ + u’v where u’ and v’ are first derivative of function u and v
u = [1/ 5x +4]
u’ = du/dx = -5 / [5x +4]2
v = exp (3 – 3x2)
v’ = dv/dx = -6x * exp (3 – 3x2)
f’(x) = uv’ + u’v
On substituting values:
f’(x) = [1/ 5x +4] [-6x * exp (3 – 3x2)] + {-5 / [5x +4]2 * exp (3 – 3x2)}
f’(x) = = { exp (3 – 3x2) / [5x + 4] } * {(-6x- 5) / [5x + 4] }
(d)
f(x) = [6x2 + 2] (x+1)
Solution
Using the derivative formula:
If a and b are function of x and in the form (ab ) then they can be simplified as: (ab ) = eb ln a
From observation it can be seen that a = [6x2 + 2] and b = (x+1) so
f(x) = [6x2 + 2] (x+1) = e(x+1) ln [6x2 + 2]
Now differentiating f(x)
dy /dx (e(x+1) ln [6x2 + 2])
On applying chain rule:
3
Document Page
f’(x) = e(x+1) ln [6x2 + 2] * d/dx ((x+1) ln [6x2 + 2] )
On solving d/dx ((x+1) ln [6x2 + 2] ) Using product rule:
6x (x+1) / (3x2 + 1) + ln (6x2 + 2)
Thus:
f’(x) = e(x+1) ln [6x2 + 2] * { 6x (x+1) / (3x2 + 1) + ln (6x2 + 2) }
e(x+1) ln [6x2 + 2] = (6x2 + 2)x+1
On substituting this value in above equation we have:
First derivative f ‘ (x) = (6x2 + 2)x+1 * { 6x (x+1) / (3x2 + 1) + ln (6x2 + 2) }
QUESTION 2
f(x) = (1 – [1 / 3] x) exp (-x2 + 5x - 6)
Solution
When limit x→∞
exp (-x2 + 5x - 6) = exp (- ) = 0
Thus f (x) = 0
QUESTION 3
f(x) = 1 / [1 – (1+1/√3)x] exp (-x2 + (3 + √3 ) x – 3 √3 )
Domain = (1 / (1+1/√3), )
Solution:
(a) Range
At x =
f(x) = 1 / [1 – (1+1/√3) ] exp (-)
= [1/] * exp (-)
= 0
At x = f(x) = 0
Similarly :
1 / (1+1/√3) = 1.577
So at x = 1.577
4

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
f(x) = 1 / [1 – (1+1/√3) 1.57] exp (-(1.57)2 + (3 + √3 ) 1.57 – 3 √3 )
= -0.67 * exp (-2.46 +7.42 -5.19 )
= -0.67 * exp (-0.23 )
= - 0.52
At x = 1 / (1+1/√3) f(x) = -0.52 (negative value )
Thus range of function is (-0.52 , 0)
(b) Strictly decreasing interval
f(x) = 1 / [1 – (1+1/√3)x] exp (-x2 + (3 + √3 ) x – 3 √3 )
f(x) = uv
where u = 1 / [1 – (1+1/√3)x] and v = exp (-x2 + (3 + √3 ) x – 3 √3 )
f’(x) = uv’ +u’v
u’ = du /dx = {1 / [1 – (1+1/√3)x] }2 d/dx ([1 – (1+1/√3)x])
= {1 / [1 – (1+1/√3)x] }2 * [(-1-√3) /√3)]
u’ = [-√3 – 3 ] / [√3 – (√3 + 1) x] 2
Similarly
v = exp (-x2 + (3 + √3 ) x – 3 √3 )
v’ = dv /dx = exp (-x2 + (3 + √3 ) x – 3 √3 ) * d/dx [ (-x2 + (3 + √3 ) x – 3 √3 ) ]
d/dx [ (-x2 + (3 + √3 ) x – 3 √3 ) ] = (-2x +3 + √3)
v’ = (-2x +3 + √3) * exp (-x2 + (3 + √3 ) x – 3 √3 )
Thus first derivative is expressed as:
f’(x) = { 1 / [1 – (1+1/√3)x] * (-2x +3 + √3) * exp (-x2 + (3 + √3 ) x – 3 √3 ) } + {[-√3 – 3 ] / [√3
– (√3 + 1) x] 2 * exp (-x2 + (3 + √3 ) x – 3 √3 )}
f’(x) = exp (-x2 + (3 + √3 ) x – 3 √3 ) [{ 1 / [1 – (1+1/√3)x] * (-2x +3 + √3) + {[-√3 – 3 ] / [√3 –
(√3 + 1) x] 2]
5
1 out of 5
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]