Calculus Questions - Desklib
VerifiedAdded on 2023/06/17
|5
|1672
|442
AI Summary
This article contains solutions to calculus questions on topics like derivatives, range, and strictly decreasing interval. The solutions are explained step-by-step for better understanding. The article is relevant for students studying calculus in college or university.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Calculus Questions
Table of Contents
Table of Contents.............................................................................................................................1
QUESTION 1..................................................................................................................................2
(a).................................................................................................................................................2
(b).................................................................................................................................................2
(c).................................................................................................................................................3
(d).................................................................................................................................................3
QUESTION 2..................................................................................................................................4
QUESTION 3..................................................................................................................................4
(a) Range......................................................................................................................................4
(b) Strictly decreasing interval.....................................................................................................5
1
Table of Contents
Table of Contents.............................................................................................................................1
QUESTION 1..................................................................................................................................2
(a).................................................................................................................................................2
(b).................................................................................................................................................2
(c).................................................................................................................................................3
(d).................................................................................................................................................3
QUESTION 2..................................................................................................................................4
QUESTION 3..................................................................................................................................4
(a) Range......................................................................................................................................4
(b) Strictly decreasing interval.....................................................................................................5
1
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
QUESTION 1
(a)
f(x) = (x9.5 – 3 + 1) (5 – [1 / (x2+1)])
Solution
f(x) = (x9.5 – 3 + 1) (5 – [1 / (x2+1)])
= 5 x6.5 - x6.5 / x3 + 5 – 1/x3
= 5 x6.5 – x3.5 + 5 – 1/x3
First derivative = f’(x)
f’(x) = 32.5 x5.5 – 3.5 x2.5 + 3x-4
Second derivative = f ’’(x) = 178.75 x4.5 – 8.75 x1.5 - 12 x-5
(b)
f(x) = exp √[x2 – (2/x) ]
Solution
f(x) = exp √[x2 – (2/x) ]
Let √[x2 – (2/x) ] = w
d/dx (ew) = dw/dx*ew
f’(x) = d/dx (√[x2 – (2/x) ]) * exp √[x2 – (2/x) ]
Again d/dx (√x) = 0.5 (x)-0.5
Applying this chain rule:
d/dx (√[x2 – (2/x) ]) = (2x + 2x-2)0.5 * [x2 – (2/x) ]-0.5
Thus f’(x) =(2x + 2x-2)0.5 * [x2 – (2/x) ]-0.5 * exp √[x2 – (2/x) ]
First derivative = 0.5*[x2 – (2/x) ]-0.5)* exp √[x2 – (2/x) ] * [2x + 2x-2]
Second derivative =
f’’(x) = d/dx [(0.5) (x2 –2x-1)-0.5 exp √[x2 – (2/x) ] * [2x + 2x-2]]
Let u = [(0.5) (x2 –2x-1)-0.5 * [2x + 2x-2] ]
On simplifying we have u = 2x3 + 1 -2 – 2x-3
du/dx = 3x2 + 6x-4
Let v = exp √[x2 – (2/x) ]
dv/dx = 1 / {2 *√ [x2 – (2/x) ] } * (2x + 2x-2) exp √[x2 – (2/x) ]
so f ’’(x) = u dv/dx + v* du/dx
2
(a)
f(x) = (x9.5 – 3 + 1) (5 – [1 / (x2+1)])
Solution
f(x) = (x9.5 – 3 + 1) (5 – [1 / (x2+1)])
= 5 x6.5 - x6.5 / x3 + 5 – 1/x3
= 5 x6.5 – x3.5 + 5 – 1/x3
First derivative = f’(x)
f’(x) = 32.5 x5.5 – 3.5 x2.5 + 3x-4
Second derivative = f ’’(x) = 178.75 x4.5 – 8.75 x1.5 - 12 x-5
(b)
f(x) = exp √[x2 – (2/x) ]
Solution
f(x) = exp √[x2 – (2/x) ]
Let √[x2 – (2/x) ] = w
d/dx (ew) = dw/dx*ew
f’(x) = d/dx (√[x2 – (2/x) ]) * exp √[x2 – (2/x) ]
Again d/dx (√x) = 0.5 (x)-0.5
Applying this chain rule:
d/dx (√[x2 – (2/x) ]) = (2x + 2x-2)0.5 * [x2 – (2/x) ]-0.5
Thus f’(x) =(2x + 2x-2)0.5 * [x2 – (2/x) ]-0.5 * exp √[x2 – (2/x) ]
First derivative = 0.5*[x2 – (2/x) ]-0.5)* exp √[x2 – (2/x) ] * [2x + 2x-2]
Second derivative =
f’’(x) = d/dx [(0.5) (x2 –2x-1)-0.5 exp √[x2 – (2/x) ] * [2x + 2x-2]]
Let u = [(0.5) (x2 –2x-1)-0.5 * [2x + 2x-2] ]
On simplifying we have u = 2x3 + 1 -2 – 2x-3
du/dx = 3x2 + 6x-4
Let v = exp √[x2 – (2/x) ]
dv/dx = 1 / {2 *√ [x2 – (2/x) ] } * (2x + 2x-2) exp √[x2 – (2/x) ]
so f ’’(x) = u dv/dx + v* du/dx
2
On substituting values, we have:
Second derivative:
f ’’(x) = [(0.5) (x2 –2x-1)* [2x + 2x-2] ] 1 / {2 *√ [x2 – (2/x) ] } * (2x + 2x-2) exp √[x2 – (2/x) ]
+ exp √[x2 – (2/x) ] [3x2 + 6x-4 ]
(c)
f(x) = [1/ 5x +4] exp (3 – 3x2)
Solution
First derivative:
Let [1/ 5x +4] = u and exp (3 – 3x2) = v
d (uv) = uv’ + u’v where u’ and v’ are first derivative of function u and v
u = [1/ 5x +4]
u’ = du/dx = -5 / [5x +4]2
v = exp (3 – 3x2)
v’ = dv/dx = -6x * exp (3 – 3x2)
f’(x) = uv’ + u’v
On substituting values:
f’(x) = [1/ 5x +4] [-6x * exp (3 – 3x2)] + {-5 / [5x +4]2 * exp (3 – 3x2)}
f’(x) = = { exp (3 – 3x2) / [5x + 4] } * {(-6x- 5) / [5x + 4] }
(d)
f(x) = [6x2 + 2] (x+1)
Solution
Using the derivative formula:
If a and b are function of x and in the form (ab ) then they can be simplified as: (ab ) = eb ln a
From observation it can be seen that a = [6x2 + 2] and b = (x+1) so
f(x) = [6x2 + 2] (x+1) = e(x+1) ln [6x2 + 2]
Now differentiating f(x)
dy /dx (e(x+1) ln [6x2 + 2])
On applying chain rule:
3
Second derivative:
f ’’(x) = [(0.5) (x2 –2x-1)* [2x + 2x-2] ] 1 / {2 *√ [x2 – (2/x) ] } * (2x + 2x-2) exp √[x2 – (2/x) ]
+ exp √[x2 – (2/x) ] [3x2 + 6x-4 ]
(c)
f(x) = [1/ 5x +4] exp (3 – 3x2)
Solution
First derivative:
Let [1/ 5x +4] = u and exp (3 – 3x2) = v
d (uv) = uv’ + u’v where u’ and v’ are first derivative of function u and v
u = [1/ 5x +4]
u’ = du/dx = -5 / [5x +4]2
v = exp (3 – 3x2)
v’ = dv/dx = -6x * exp (3 – 3x2)
f’(x) = uv’ + u’v
On substituting values:
f’(x) = [1/ 5x +4] [-6x * exp (3 – 3x2)] + {-5 / [5x +4]2 * exp (3 – 3x2)}
f’(x) = = { exp (3 – 3x2) / [5x + 4] } * {(-6x- 5) / [5x + 4] }
(d)
f(x) = [6x2 + 2] (x+1)
Solution
Using the derivative formula:
If a and b are function of x and in the form (ab ) then they can be simplified as: (ab ) = eb ln a
From observation it can be seen that a = [6x2 + 2] and b = (x+1) so
f(x) = [6x2 + 2] (x+1) = e(x+1) ln [6x2 + 2]
Now differentiating f(x)
dy /dx (e(x+1) ln [6x2 + 2])
On applying chain rule:
3
f’(x) = e(x+1) ln [6x2 + 2] * d/dx ((x+1) ln [6x2 + 2] )
On solving d/dx ((x+1) ln [6x2 + 2] ) Using product rule:
6x (x+1) / (3x2 + 1) + ln (6x2 + 2)
Thus:
f’(x) = e(x+1) ln [6x2 + 2] * { 6x (x+1) / (3x2 + 1) + ln (6x2 + 2) }
e(x+1) ln [6x2 + 2] = (6x2 + 2)x+1
On substituting this value in above equation we have:
First derivative f ‘ (x) = (6x2 + 2)x+1 * { 6x (x+1) / (3x2 + 1) + ln (6x2 + 2) }
QUESTION 2
f(x) = (1 – [1 / 3] x) exp (-x2 + 5x - 6)
Solution
When limit x→∞
exp (-x2 + 5x - 6) = exp (-∞ ) = 0
Thus f (x) = 0
QUESTION 3
f(x) = 1 / [1 – (1+1/√3)x] exp (-x2 + (3 + √3 ) x – 3 √3 )
Domain = (1 / (1+1/√3), ∞)
Solution:
(a) Range
At x = ∞
f(x) = 1 / [1 – (1+1/√3) ∞] exp (-∞)
= [1/∞] * exp (-∞)
= 0
At x = ∞ f(x) = 0
Similarly :
1 / (1+1/√3) = 1.577
So at x = 1.577
4
On solving d/dx ((x+1) ln [6x2 + 2] ) Using product rule:
6x (x+1) / (3x2 + 1) + ln (6x2 + 2)
Thus:
f’(x) = e(x+1) ln [6x2 + 2] * { 6x (x+1) / (3x2 + 1) + ln (6x2 + 2) }
e(x+1) ln [6x2 + 2] = (6x2 + 2)x+1
On substituting this value in above equation we have:
First derivative f ‘ (x) = (6x2 + 2)x+1 * { 6x (x+1) / (3x2 + 1) + ln (6x2 + 2) }
QUESTION 2
f(x) = (1 – [1 / 3] x) exp (-x2 + 5x - 6)
Solution
When limit x→∞
exp (-x2 + 5x - 6) = exp (-∞ ) = 0
Thus f (x) = 0
QUESTION 3
f(x) = 1 / [1 – (1+1/√3)x] exp (-x2 + (3 + √3 ) x – 3 √3 )
Domain = (1 / (1+1/√3), ∞)
Solution:
(a) Range
At x = ∞
f(x) = 1 / [1 – (1+1/√3) ∞] exp (-∞)
= [1/∞] * exp (-∞)
= 0
At x = ∞ f(x) = 0
Similarly :
1 / (1+1/√3) = 1.577
So at x = 1.577
4
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
f(x) = 1 / [1 – (1+1/√3) 1.57] exp (-(1.57)2 + (3 + √3 ) 1.57 – 3 √3 )
= -0.67 * exp (-2.46 +7.42 -5.19 )
= -0.67 * exp (-0.23 )
= - 0.52
At x = 1 / (1+1/√3) f(x) = -0.52 (negative value )
Thus range of function is (-0.52 , 0)
(b) Strictly decreasing interval
f(x) = 1 / [1 – (1+1/√3)x] exp (-x2 + (3 + √3 ) x – 3 √3 )
f(x) = uv
where u = 1 / [1 – (1+1/√3)x] and v = exp (-x2 + (3 + √3 ) x – 3 √3 )
f’(x) = uv’ +u’v
u’ = du /dx = {1 / [1 – (1+1/√3)x] }2 d/dx ([1 – (1+1/√3)x])
= {1 / [1 – (1+1/√3)x] }2 * [(-1-√3) /√3)]
u’ = [-√3 – 3 ] / [√3 – (√3 + 1) x] 2
Similarly
v = exp (-x2 + (3 + √3 ) x – 3 √3 )
v’ = dv /dx = exp (-x2 + (3 + √3 ) x – 3 √3 ) * d/dx [ (-x2 + (3 + √3 ) x – 3 √3 ) ]
d/dx [ (-x2 + (3 + √3 ) x – 3 √3 ) ] = (-2x +3 + √3)
v’ = (-2x +3 + √3) * exp (-x2 + (3 + √3 ) x – 3 √3 )
Thus first derivative is expressed as:
f’(x) = { 1 / [1 – (1+1/√3)x] * (-2x +3 + √3) * exp (-x2 + (3 + √3 ) x – 3 √3 ) } + {[-√3 – 3 ] / [√3
– (√3 + 1) x] 2 * exp (-x2 + (3 + √3 ) x – 3 √3 )}
f’(x) = exp (-x2 + (3 + √3 ) x – 3 √3 ) [{ 1 / [1 – (1+1/√3)x] * (-2x +3 + √3) + {[-√3 – 3 ] / [√3 –
(√3 + 1) x] 2]
5
= -0.67 * exp (-2.46 +7.42 -5.19 )
= -0.67 * exp (-0.23 )
= - 0.52
At x = 1 / (1+1/√3) f(x) = -0.52 (negative value )
Thus range of function is (-0.52 , 0)
(b) Strictly decreasing interval
f(x) = 1 / [1 – (1+1/√3)x] exp (-x2 + (3 + √3 ) x – 3 √3 )
f(x) = uv
where u = 1 / [1 – (1+1/√3)x] and v = exp (-x2 + (3 + √3 ) x – 3 √3 )
f’(x) = uv’ +u’v
u’ = du /dx = {1 / [1 – (1+1/√3)x] }2 d/dx ([1 – (1+1/√3)x])
= {1 / [1 – (1+1/√3)x] }2 * [(-1-√3) /√3)]
u’ = [-√3 – 3 ] / [√3 – (√3 + 1) x] 2
Similarly
v = exp (-x2 + (3 + √3 ) x – 3 √3 )
v’ = dv /dx = exp (-x2 + (3 + √3 ) x – 3 √3 ) * d/dx [ (-x2 + (3 + √3 ) x – 3 √3 ) ]
d/dx [ (-x2 + (3 + √3 ) x – 3 √3 ) ] = (-2x +3 + √3)
v’ = (-2x +3 + √3) * exp (-x2 + (3 + √3 ) x – 3 √3 )
Thus first derivative is expressed as:
f’(x) = { 1 / [1 – (1+1/√3)x] * (-2x +3 + √3) * exp (-x2 + (3 + √3 ) x – 3 √3 ) } + {[-√3 – 3 ] / [√3
– (√3 + 1) x] 2 * exp (-x2 + (3 + √3 ) x – 3 √3 )}
f’(x) = exp (-x2 + (3 + √3 ) x – 3 √3 ) [{ 1 / [1 – (1+1/√3)x] * (-2x +3 + √3) + {[-√3 – 3 ] / [√3 –
(√3 + 1) x] 2]
5
1 out of 5
Related Documents
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.