logo

Math Problems With Solution 2022

ย ย ย 

Added on ย 2022-09-28

6 Pages1211 Words19 Views
Surname 1
Student Name

Instructor Name

Course

15, August 2019

Assignment 1 for MATH203

Q1.

a.

Solution

The transpose AT of ๐‘š ๐‘ฅ ๐‘› matrix A is ๐‘š ๐‘ฅ ๐‘› matrix

It is gotten from A by alternating both rows and columns.

For symmetric matrix then

AT = A.

The set of all symmetric matrix in Mn(R) is a subspace of Mn(R).

Verifying for M2(R) is a vector space

๐ด = (๐‘Ž1 ๐‘Ž2
๐‘Ž3 ๐‘Ž4) , ๐ต = (๐‘1 ๐‘2
๐‘3 ๐‘4
)

The Sum of a 2 ๐‘ฅ 2 matrices is hence a 2 ๐‘ฅ 2 matrix
๐ด + ๐ต โ†’ [๐‘Ž1 + ๐‘1 ๐‘Ž2 + ๐‘2
๐‘Ž3 + ๐‘3 ๐‘Ž4 + ๐‘4
]

But,
[๐‘1 + ๐‘Ž1 ๐‘2 + ๐‘Ž2
๐‘3 + ๐‘Ž3 ๐‘4 + ๐‘Ž4
] = ๐ต + ๐ด

A 2 ๐‘ฅ 2 matrix multiplied by a scalar also results in a 2 ๐‘ฅ 2 matrix

In three 2 ๐‘ฅ 2 matrix,
๐ด = (๐‘Ž1 ๐‘Ž2
๐‘Ž3 ๐‘Ž4) , ๐ต = (๐‘1 ๐‘2
๐‘3 ๐‘4
) , ๐ถ = (๐‘1 ๐‘2
๐‘3 ๐‘4)

We have
(๐ด + ๐ต) + ๐ถ = ๐ด + (๐ต + ๐ถ)

Surname 2
The additive inverse of ๐ด = (๐‘Ž ๐‘
๐‘ ๐‘‘) ๐‘–๐‘  โˆ’ ๐ด = (โˆ’๐‘Ž โˆ’๐‘
โˆ’๐‘ โˆ’๐‘‘)

If A is a matrix then 1A = A

Given matrix ๐ด = (๐‘Ž ๐‘
๐‘ ๐‘‘) and scalars t and h, we have
(๐‘ก + โ„Ž)๐ด = ((๐‘ก + โ„Ž)๐‘Ž (๐‘ก + โ„Ž)๐‘
(๐‘ก + โ„Ž)๐‘ (๐‘ก + โ„Ž)๐‘‘)
= (๐‘ก๐‘Ž + โ„Ž๐‘Ž ๐‘ก๐‘ + โ„Ž๐‘
๐‘Ÿ๐‘ + โ„Ž๐‘ ๐‘ก๐‘‘ + โ„Ž๐‘‘)
= ๐‘ก๐ด + โ„Ž๐ด

b.

Solution

If A, B are upper-triangular matrices

๐ด๐‘–๐‘— ๐‘Ž๐‘›๐‘‘ ๐ต๐‘–๐‘— ๐‘Ž๐‘Ÿ๐‘’ 0 ๐‘คโ„Ž๐‘’๐‘›๐‘’๐‘ฃ๐‘’๐‘Ÿ ๐‘– > ๐‘—

This means (๐ด + ๐ต)๐‘–๐‘— = ๐ด๐‘–๐‘— + ๐ต๐‘–๐‘— ๐‘–๐‘  0 ๐‘คโ„Ž๐‘’๐‘› ๐‘– > ๐‘—

Hence, (๐ด + ๐ต) is the upper-triangular.

Hence if c is a constant scalar

Then we have
(๐‘๐ด)๐‘–๐‘— = ๐‘(๐ด๐‘–๐‘—) = 0 ๐‘คโ„Ž๐‘’๐‘› ๐‘– > ๐‘—

Hence (๐‘๐ด) is upper-triangular.

Therefore, 0 matrix is a upper-triangular.

Hence the upper-triangular matrices will form a subspace of Mn(R).

Surname 3
Q2.

Solution
๐‘ƒ2(๐‘…) ๐‘–๐‘  ๐‘Ž ๐‘ ๐‘ข๐‘๐‘ ๐‘๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘’๐‘Ž๐‘™ ๐‘๐‘œ๐‘™๐‘ฆ๐‘›๐‘œ๐‘š๐‘–๐‘Ž๐‘™๐‘  ๐‘œ๐‘  ๐‘ƒ3(๐‘…)

Suppose V โ†’ vector space.

U is a subspace of V

If and only if it satisfies the three properties:

1... U = nonempty subset of V

2... x + y โˆˆ U for all x, y โˆˆ U ...under addition

3... tx โˆˆ U for all x โˆˆ U and t โˆˆ R ... under a scalar multiplication

The elements of ๐‘…2 have exactly 2 entries, and the elements of ๐‘…3 have three entries.

Therefore ๐‘…2 is not a subspace of ๐‘…3

And the inverse is also true: ๐‘…3 is not a subset of ๐‘…2.

Similarly, M(2, 2) is not a subspace of M(2, 3), because M(2, 2) is not a subset of M(2, 3).

Q 3.

a.

Solution
๐น = {๐‘“ โˆถ [โˆ’1, 1] โ†’ ๐‘…
๐ธ[โˆ’1, 1] = ๐‘“ โˆ’ (๐‘ฅ) โ†’ ๐‘“(๐‘ฅ)}

๐‘‚ = ๐‘“(โˆ’๐‘ฅ) = โˆ’๐‘“(๐‘ฅ)

To find the โ„ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ,
๐ธ = โˆซ โˆ’๐‘ฅ
1
โˆ’1
= ๐‘“(๐‘ฅ) ๐‘‚ = โˆซ โˆ’๐‘ฅ
1
โˆ’1
= โˆ’๐‘“(๐‘ฅ)

Hence, since
๐ธ = โˆซ โˆ’๐‘ฅ
1
โˆ’1
= ๐‘“(๐‘ฅ)

End of preview

Want to access all the pages? Upload your documents or become a member.