CHANGE OF VARIABLE IN MULTIPLE INTEGRALS.

Verified

Added on  2022/08/26

|10
|380
|25
AI Summary

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
CHANGE OF VARIABLE IN MULTIPLE INTEGRALS
Question 1
We have the following equations:
x=X ( r , θ ) =r cos θ , y=Y ( r ,θ ) =r sin θ , z =z ;r > 0 ,0 θ 2 π
Here, we simply substituted x and y by their polar coordinates but z is unchanged. The Jacobian
becomes
J=
| cos θ sin θ
r sin θ
0
r cos θ
0
0
0
1|=r ( cos2 θ +sin2 θ )=r
Question 2
The area bounded by the curve r =sin 3θ is given by
A=3
π
3
π
3

0
sin3 θ
1 r dr
¿ 3
π
3
π
3
1
2 sin2 3θ
¿ 3 [ π
6 ]
¿ π
2
Question 3






e ( x2+ y2 ) dxdy =
0


0
2 π
er2
r dr
¿ 2 π
0

er2
r dr

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿ 2 π [ 1
2 ]
¿ π
Question 4



ex2
dx= [





e ( x2+ y2 ) dx dy ]1
2
¿ [ π ]
1
2
¿ π
1
2
Question 5
Let X N (0 , 1) so that X has probability density function is
f ( x )= 1
2 π e
1
2 x2
The pdf of X⃓ is
φ ( x ) =2 f ( x ) = 2
2 π e
1
2 x2
, x 0
Let Y exp(1)
g ( x )=e x , x 0
To get constant C we have
φ(x )
g ( x ) = 2
π e
1
2 ( x22 x )
¿ 2 e
π e
1
2 ( x1 ) 2
Question 6
Document Page

1
1

0
1 ( x1 )
2
x+ y
x2+ y2 dxdy
y= 1 ( x1 )2 y2=1 ( x1 )2 ( x1 )2+ y2 =1
Further, we have

1
1

0
1 ( x1 )2
x+ y
x2+ y2 dxdy=
0
π
2

0
2 cos θ
r2 drdθ
¿
0
π
2
[ r3
3 ]0
2 cosθ

¿ 8
3
0
π
2
( 1sin2 θ ) cos θ
¿ 8
3 ( 1 1
3 )
¿ 16
9
Question 7
A=
0
2 π

r=0
r=1+sin θ
r drdθ=
0
2 π
[ r2
2 ]0
1+sin θ

¿
0
2 π ( 1+ sin θ ) 2
2
¿ ¿ ¿
¿ 3 π
2 square units
Question 8
z +x2+ y2 =4
z +r2=4
Document Page
Equation of cylinder is x2+ y2=1r2 =1
We have region E
E= { ( r , θ , z ) 0 z 4r2 , 0 r 1, 0 θ 2 π }
Integral for the volume is
V ( E ) =
0
2 π

0
1

0
4 r2
r dzdrdθ
¿
0
2 π

0
1
[ rz ] 0
4r2
drdθ
¿
0
2 π

0
1
(r ( 4r2 ) ) drdθ
¿
0
2 π
[r2 r3
3 ]0
1

¿
0
2 π
5
3
¿ [ 5
3 θ ]0
2 π
¿ 10 π
3 cubic units
Question 9
We find the Jacobian of the transformation ( r , θ , ) (x , y , z) of spherical coordinates. Our
partial derivatives are;
x
r =cos θ sin , x
θ =r sin θ sin , x
=r cos θ cos
y
r =sinθ sin , y
θ =r cos θ sin , y
=r sin θ cos

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
z
r =cos , z
θ =0 , z
=r sin
The Jacobian becomes;
J=
|
cos θ sin r sin θ sin
sin θ sin
cos
r cos θ sin
0
r cos θ cos
r sin θ cos
r sin |
This works out to r2 sin
Question 10
Suppose a sphere of radius a has variable density ρ=ρ0 (1 r
a ), where ρ0 is a constant. Find total
mass M of the sphere by expressing M as a triple integral in spherical coordinates of the density
over the volume of the sphere.
The equation of the sphere is
r2 + z2=c2
The triple integral yields
V = f ( r ,θ , z ) r dzdrdθ=
0
π

0
r

0
z
f ( r , θ , z ) r dzdrdθ
Total mass will be
M == ρ0 (1 r
a )
0
π

0
r

0
z
f ( r , θ , z ) r dzdrdθ
Problem set 6: Plane curvature
Question 1
tan (t )= ˙y (t)
˙x (t)
Document Page
( t )=tan1 ˙y
˙x
d (t )
dt =
i=1
n
d
d xi d xi
dt
¿ ˙x ¨y ˙y ¨x
˙x2+ ˙y2
Question 2
Arc length of C at time t is given by s ( t ) =
a
t
˙x2 ( u ) + ˙y2 (u)du=
a
t
˙r ( u ) du. The curvature k of C is
defined as d
ds while the radius of curvature is defined as ρ=1
k . Use the chain rule to show that
k = ˙x ¨y ˙y ¨x
( ˙x2 + ˙y2 )
3
2
Solution
The curvature is the length of the vector and is obtained by the formula;
k =T ' ( t ) dt
d = T ' (t)
d
dt
=T '(t )
r ' ( t )
Where
d
dt = ˙x ¨y ˙y ¨x
x2 + y2
Substituting the back into the formula and applying chain rule we obtain
k = ˙x ¨y ˙y ¨x
( ˙x2 + ˙y2 )
3
2
Question 3
Document Page
x2+ y2=a2
Consider x ( t ) =a cos t and y ( t ) =a sin t
x2+ y2
( a cos t ) 2 + ( a sin t ) 2=¿
a2 ( cos t )2 +a2 ( sin t )2=¿
a2 ( ( cos t )2 + ( sin t )2 )=¿
a2 ( 1 )=a2
Thus, x (t )=a cos t and y ( t ) =a sin t are the parametric equations for the circle.
curvature=
dx
dt d2 y
d t2
dy
dt d2 x
d t2
( ( dx
dt )2
+ ( dy
dt )2
)( 3
2 )
Question 4
y=x2
We can express y=x2 as x=t and y=t2
curvature=
dx
dt d2 y
d t2
dy
dt d2 x
d t2
( ( dx
dt )2
+ ( dy
dt )2
)( 3
2 )
¿ ( 12 ) ( 2t0 )
( 12+ 4 t2 )
3
2

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
¿ 22 t
( 1+ 4 t2 )
3
2
Question 5
y=ln ( cos x ) , (π
2 x π
2 )
f ( x )=ln cos x
f ' ( x )=tan x
f ' ' ( x ) =sec2 x
k = sec2 x
( 1+ tan2 x )
3
2
¿ 1
sec x =cos x
Question 6
dx
dt =1cos t
dy
dt =sin t
ds= ( dx
dt )2
+ ( dy
dt )2
dt
ds= ( 1cos t ) 2 + ( sin t ) 2 dt = 22cos t dt
S=
0
α
22cos t dt=
0
α
4 sin2 t
2 dt
S= [4 cos t
2 ]0
α
For a complete arch, α =2 π. Thus,
Document Page
S= [4 cos t
2 ]0
2 π
=8
Question 7
Find the radius of curvature ρ for a point on the cycloid corresponding to a given time t=α .
The coordinates of the centre are given by x (t )=at and y ( t ) =a
Thus the radius a= ( ata ( tsin t ) )
2
+ ( aa ( 1cos t ) ) 2
Question 8
Find the area under one arch of the cycloid.
A=
0
2 πa
a ( 1cos t ) dx
dt dt
¿
0
2 π
a ( 1cos t ) [ a ( 1cos t ) ] dt
¿ a2

0
2 π
( 1cos t )2 dt
¿ a2
[t +2 sint + t
2 + sin 2t
4 ]0
2 π
¿ 3 π a2
Question 9
Arc length
L=
0
t
[ C' ( t ) ] 2
+ [ S' ( t ) ] 2
dt
C ( t ) =
0
t
cos u2 du
C' ( t )=cos t2
Document Page
S ( t ) =
0
t
sin u2 du
S' (t )=sint2
Substituting back
L=
0
t
(cos t2 )2
+ ( sin t2 )2
dt
¿
0
t
1 dt
¿ [ t ]0
t =t 0
¿ t
Question 10
Show that the curvature of the Cornu spiral is 2 t and deduce that the curve has a constant rate of
change of curvature.
The curvature of the cornu spiral k ( t )=t2. This is the value for generalized cornu spiral. The
value is constant for all cases.
1 out of 10
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]