Chemical Reaction Engineering Calculations for PFR and CSTR
Verified
Added on 2023/06/03
|4
|886
|357
AI Summary
This article discusses the calculations involved in chemical reaction engineering for PFR and CSTR reactors. It covers topics such as conversion, volume, and rate of reaction for different types of reactions. The equations and solutions are provided in detail.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
a)For PFR, V=FAO∫ 0 x dX −rA =FAO kCAO ∫ 0 x(1+ϵX) (1−X)dXwhereϵ=YA1δ=1(2+1−1)=2 ¿FAO kCAO ¿ ¿(2.5 0.44∗0.3)¿ ¿189.4dm3∗5.11 ¿967dm3 b)For CSTR, our equation is of the formA→B+2C V=FAOX −tA Where−tA=kCA CA=CAO 1−X 1+ϵX CA0=PAO RT=10 0.082∗4000.3 V=FAOX(1−ϵX) CAOk(1−X) k=10−4e 85000 8.31(1 323−1 400) =0.044 HenceV=2.5∗0.9(1+2∗0.9) 0.044∗0.3∗(1−0.9)=4772dm3 c)dV dX=FAO −rA where−rA=kCAO (1+ϵX)((1−X)−4CAO 2X2 (1+ϵX)2KC ) Solving for this equation givesV=290dm3
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
We want to obtain a plot of x and y against v. we shall have our equations as dX dV=−rA FAO anddY dV=−∝ 2y(1+ϵX). Solving for the differential equations on polymath gives the following output. Calculated values of DEQ variables VariableInitial valueMinimal valueMaximal valueFinal value 1alfa0.0010.0010.0010.001 2C0.30.007670.30.00767 3Co0.30.30.30.3 4esp2.2.2.2. 5fo2.52.52.52.5 6k0.0440.0440.0440.044 7r-0.0132-0.0132-0.0003375-0.0003375 8v00500.500. 9x000.6564310.656431 10y1.0.17211111.0.1721111 To get the values of x and y at v=500 as x=0.67 and y=0.17 d)For PFR and 1storder,KT=−ln(1−XA)
Hence0.001∗T=−ln(1−0.9)=23025.85minwhich is equivalent to 23025.85 24∗7=137.057days e)For the reactionA→B+2C, we have−rA=kfCA−kBCBCC 2=0 KC=kf kb =0.025 With an initial concentrationCAO=0.305mol/lwe have X3∗4∗0.3052=0.205(1+2X)2(1−X). solving this nonlinear equation givesX=0.512. For 90% of the equilibrium conversion ,X=0.9∗0.512=0.4608 V=FAOX −rA where−rA=kfCAO 1−X 1+2X−kf KC CAO X 1+2X(CAO)2X2 (1+2X)2 −rA=0.443∗0.305 1+2∗0.4608[(1−0.4608)− 1 0.025∗4∗0.3052∗0.46083 (1+2∗0.4608)2]=1.08828∗10−2 For CSTR,V=FAOX(1+ϵX) kCAO((1−X)−4CAO 2X2 (1+ϵX)2KC ) =2.5∗0.47∗(1+2(0.4608)) 0.044∗0.3¿¿ For PFR,dX dV=−rA FAO and−rA=kCAO (1+ϵX)((1−X)−4CAO 2X2 (1+ϵX)2KC ). Solving using polymath to obtain our volume as 290dm3as indicated by the output below Calculated values of DEQ variables Variabl e Initial value Minimal value Maximal value Final value 1cao0.30.30.30.3 2e2.2.2.2. 3fao2.52.52.52.5 4k0.0440.0440.0440.044 5kc0.0250.0250.0250.025 6ra-0.0132-0.0132-0.0009033- 0.0009033
7v00290.2388290.2388 8x000.470.47 f)For the reactionA→B+2C, we have−rA=ktCA−ktCBCC 2 KC =0 Isothermal, no pressure dropCA=CAO(1−X) 1+ϵX,CB=CAOX 1+ϵX,CC=2CAOX 1+ϵX wherekc=0.08∧Kc=0.025,X=0.47,ϵ=2,CAO=0.3 −rA=kCAO (1+ϵX)((1−X)−4CAO 2X2 (1+ϵX)2KC ). Solving the differential equations using polymath gives: Calculated values of DEQ variables Variabl e Initial value Minimal value Maximal value Final value 1cao0.30.30.30.3 2e2.2.2.2. 3fao2.52.52.52.5 4k0.0440.0440.0440.044 5kc0.0250.0250.0250.025 6ra-0.0132-0.0132-0.0009033- 0.0009033 7v00290.2388290.2388 8x000.470.47 Obtaining the volume as 290.2388 References [1]H. S. Fogler, Elements of Chemical Reactions Engineering, 3rd ed., New Delhi: Prentice-Hall of India Dum Ma8Rd, 2004. [2]E. B. Noman, Chemical Reactor Design, Optimization, and Scaleup, 2nd ed., WILEY, 1987.