ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Communication Systems: Solved Assignments and Essays

Verified

Added on  2023/06/04

|12
|1364
|489
AI Summary
This document contains solved assignments and essays on various topics related to Communication Systems. It covers topics such as QPSK, binary communication systems, M-ary PSK modulation, and more. The assignments also include MATLAB implementations and probability of error performance analysis.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
ASSIGNMENT 2
COMMUNICATION SYSTEMS
INSTITUTIONAL AFFILIATION
LOCATION
INSTRUCTOR (PROFESSOR)
STUDENT NAME
STUDENT REGISTRATION NUMBER
DATE OF SUBMISSION
1

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
QUESTION 1
Part A
(i) H(t) as a function of A and T
s ( t )= {A , for 0 t T
0 , otherwise
Introducing the noise signal,
H ( t ) =s ( t ) +n ( t ) 0 t T
η= |s0 ( t )|2
E [ n2 ( t ) ]
h ( t )=F1 [ H ( f ) ]
2 K
N0 [


S¿ ( f ) e j w t0
e j wt df ] ¿
¿ 2 K
N0
[ s ( t0 t ) ] ¿
From the impulse response output, the constant value is given as,
Cs= 2 K
N0
Therefore,
h( t)=Cs (t 0t )
(ii) H(f), the Fourier transform of h(t)
2
Document Page
H ( f ) =2 K
N0
S¿ ( f ) e j w t 0
(iii) Maximum signal to noise ratio at the output of h(t).
(iv) Show
The impulse response is demonstrated by plotting the images below,
Part B
Section 1
QPSK transmitted with a required probability of bit error, PB
3
Document Page
0 5 10 15 20 25 30 35 40 45
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Sm ( t )= ( 2 Pr ) cos [ 2 π f 0 t +ϕ ( m ) ] 0 t< T
ϕ ( m ) ϵ { π
4 , 3 π
4 , 5 π
4 , 7 π
4 }
Pr received average signal power
r ( t )=sm ( t )+ n(t)
Pr
N 0
, Pr= 1
T
0
T
sm
2 ( t ) dt
SQPSK = { Es cos [ (i1 ) π
2 ] ϕ1 ( t ) Es sin [ ( i1 ) ] ϕ2 ( t ) }
The bit rate in either I or Q channel are ½ input data rate.
Section 2
Matlab Implementation
4

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
0 5 10 15
SNR in db
10-10
10-8
10-6
10-4
10-2
100
probability of error
Probability of Error Performance
QUESTION 2
Binary communication system
Part a
P0P1 =1P0 be arbitrary
V rv ( conditional probability density )
f vu { v|am }finitenonzero v R
m {0,1 }
To determine the a-posteriori probability for the input,
puv ( am|v )= ( Pm f vu ( v|am ) )
f v ( u )
Part b
It is possible to obtain the likelihood ratio of the MAP decision,
5
Document Page
A ( v ) = f vu ( v|a0 )
f vu ( v|a1 ) , p1
p0
=η
Part c
The overall probability of the error is given as,
Pr {e }= p0 Pr {e|U =a0 }+ p1 {e|U =a1 }
P ( error ) =0.5 Q
( Es
N 0
2 ) +0.5Q
( Es
N 0
2 )
P ( error ) =Q ( 2 Es
N 0 ) =0.5 erfc ( Es
N0 )
Part d
Replacing with real values,
f R 0 = 1
2 π e ( 5 y2 )
f R 1 = 1
2 π e¿¿
f Y /H i ( y / Hi ) =
k =1
m
1
2 πσ exp [ ( yk si ,k )
2
2σ 2 ]
To obtain the error probability,
Perror = ( 0.5 ) ( 0.86675 ) + ( 0.5 ) ( 0.56703 ) =0.716578
QUESTION 3
Communication system: binary information transmission
6
Document Page
Part A
ωc= 2 π
T s
=N ( 2 π
T b )
ρ= A2 T b
2η
Part B
π0=Pr { transmits s0 ( t ) }= 1
2
π1=Pr {transmits s1 ( t ) }=1
2
H0 :r ( t ) =S0 ( t ) +n ( t ) , 0 t <T
H1 : r ( t )=S1 ( t )+ n ( t ) , 0 t <T
Sn ( f )= N 0
2 ,< f <
s0 ( t )= {A ,0 t 3
4 T
0 , otherwise
s1 ( t ) = {A , 1
4 T t T
0 , otherwise
ωc= 2 π
T s
=N ( 2 π
T b )
7

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ρ= A2 T b
2η
SN Re=10 log10 [ A2 Tb
2 η ]
The maximum data rate is given as,
Eb =π0
0
T
s0
2 ( t ) dt+ π1
0
T
s1
2 ( t ) dt
To obtain the probability of error,
Pb=erfc ( Eb
N0 ) [ 1 1
2 erfc ( Eb
N 0 ) ]
Part C
It is observed that an increased in the rb value causes a pb value decrease. The illustration below
expounds on the relationship,
QUESTION 4
Part A
For an M-ary PSK modulation
ϕi ( t ) =Acos ( ωc t+θi ) 0<t T s
θi =0 , 2 π
M , , 2 ( M1 ) π
M
8
Document Page
sϕ ( ω ) = A2 T s S a2
[ ( ωωc ) T s
2 ]
T b= T s
log2 M
Pϵ 2 erfc 2 Es
η sin2 π
M m>2
Pϵ 2 erfc 2 Es
η sin2 π
2 M
Γ =
sin2 π
M
sin2 π
2 M
-5 0 5 10 15 20
Es/No, dB
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
Symbol Error Rate
Symbol error probability curve for QPSK
aplha=0
aplha=0.15
aplha=0.25
aplha=0.35
aplha=0.45
Part B
9
Document Page
-5 0 5 10 15 20
Es/No, dB
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
Symbol Error Rate
Symbol error probability curve for QPSK
aplha=0
aplha=0.15
aplha=0.25
aplha=0.35
aplha=0.45
QUESTION 5
Efficiency of 0.55
EIR Ptransmit =10 log ( Ptransmitter ) Transmitte rfeede rloss
+Transmitte r Antennagain
Antenn apointin gloss
(dBW )
EIR Ptransmit =10 log 100.5 dB+45.210.70
EIR Ptransmit =54.01 dB
Gr
T s [ dB
K ] =4 dB/ K
10

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Pr =Pt (1|Γt |2
. gt . ( λ
4 πd )2
. 1
αm . Aeff (1|Γr|2
) )
Lbf =20 log10 ( 4 πd
λ )
Lb f uplink
=20 log10
( 4 π36000
c
f )=20 log10 ( 144e6 π
0.01 )
Lb f downlink
=20 log10
( 4 π36000
c
f )=20 log10 ( 144e6 π
0.015 )
Lb f downlink
=209.5884 dB
Part B
P1=Pr {1 bit error|s1 (t)}
¿ Pr {s2 ( t )|s1 ( t ) }+ Pr {s4 ( t )|s1 ( t ) }+ Pr { s8 ( t )|s1 ( t ) }
The autocorrelation is given as,
Rc ( τ ) = 1
T c

Tc
2
T c
2
c ( t ) c ( tτ ) dt
11
Document Page
0 5 10 15
SNR in db
10-10
10-8
10-6
10-4
10-2
100
probability of error
Probability of Error Performance
The receiver output is given as,
d ( t ) c2 (t)=d (t)
Sk ( t )= 2 Eb
T mk ( t ) pk ( t ) cos ( 2 π f c t+ φk )
12
1 out of 12
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]