Communication Systems: Solved Assignments and Essays

Verified

Added on  2023/06/04

|12
|1364
|489
AI Summary
This document contains solved assignments and essays on various topics related to Communication Systems. It covers topics such as QPSK, binary communication systems, M-ary PSK modulation, and more. The assignments also include MATLAB implementations and probability of error performance analysis.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
ASSIGNMENT 2
COMMUNICATION SYSTEMS
INSTITUTIONAL AFFILIATION
LOCATION
INSTRUCTOR (PROFESSOR)
STUDENT NAME
STUDENT REGISTRATION NUMBER
DATE OF SUBMISSION
1
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
QUESTION 1
Part A
(i) H(t) as a function of A and T
s ( t )= {A , for 0 t T
0 , otherwise
Introducing the noise signal,
H ( t ) =s ( t ) +n ( t ) 0 t T
η= |s0 ( t )|2
E [ n2 ( t ) ]
h ( t )=F1 [ H ( f ) ]
2 K
N0 [


S¿ ( f ) e j w t0
e j wt df ] ¿
¿ 2 K
N0
[ s ( t0 t ) ] ¿
From the impulse response output, the constant value is given as,
Cs= 2 K
N0
Therefore,
h( t)=Cs (t 0t )
(ii) H(f), the Fourier transform of h(t)
2
Document Page
H ( f ) =2 K
N0
S¿ ( f ) e j w t 0
(iii) Maximum signal to noise ratio at the output of h(t).
(iv) Show
The impulse response is demonstrated by plotting the images below,
Part B
Section 1
QPSK transmitted with a required probability of bit error, PB
3
Document Page
0 5 10 15 20 25 30 35 40 45
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Sm ( t )= ( 2 Pr ) cos [ 2 π f 0 t +ϕ ( m ) ] 0 t< T
ϕ ( m ) ϵ { π
4 , 3 π
4 , 5 π
4 , 7 π
4 }
Pr received average signal power
r ( t )=sm ( t )+ n(t)
Pr
N 0
, Pr= 1
T
0
T
sm
2 ( t ) dt
SQPSK = { Es cos [ (i1 ) π
2 ] ϕ1 ( t ) Es sin [ ( i1 ) ] ϕ2 ( t ) }
The bit rate in either I or Q channel are ½ input data rate.
Section 2
Matlab Implementation
4
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
0 5 10 15
SNR in db
10-10
10-8
10-6
10-4
10-2
100
probability of error
Probability of Error Performance
QUESTION 2
Binary communication system
Part a
P0P1 =1P0 be arbitrary
V rv ( conditional probability density )
f vu { v|am }finitenonzero v R
m {0,1 }
To determine the a-posteriori probability for the input,
puv ( am|v )= ( Pm f vu ( v|am ) )
f v ( u )
Part b
It is possible to obtain the likelihood ratio of the MAP decision,
5
Document Page
A ( v ) = f vu ( v|a0 )
f vu ( v|a1 ) , p1
p0
=η
Part c
The overall probability of the error is given as,
Pr {e }= p0 Pr {e|U =a0 }+ p1 {e|U =a1 }
P ( error ) =0.5 Q
( Es
N 0
2 ) +0.5Q
( Es
N 0
2 )
P ( error ) =Q ( 2 Es
N 0 ) =0.5 erfc ( Es
N0 )
Part d
Replacing with real values,
f R 0 = 1
2 π e ( 5 y2 )
f R 1 = 1
2 π e¿¿
f Y /H i ( y / Hi ) =
k =1
m
1
2 πσ exp [ ( yk si ,k )
2
2σ 2 ]
To obtain the error probability,
Perror = ( 0.5 ) ( 0.86675 ) + ( 0.5 ) ( 0.56703 ) =0.716578
QUESTION 3
Communication system: binary information transmission
6
Document Page
Part A
ωc= 2 π
T s
=N ( 2 π
T b )
ρ= A2 T b
2η
Part B
π0=Pr { transmits s0 ( t ) }= 1
2
π1=Pr {transmits s1 ( t ) }=1
2
H0 :r ( t ) =S0 ( t ) +n ( t ) , 0 t <T
H1 : r ( t )=S1 ( t )+ n ( t ) , 0 t <T
Sn ( f )= N 0
2 ,< f <
s0 ( t )= {A ,0 t 3
4 T
0 , otherwise
s1 ( t ) = {A , 1
4 T t T
0 , otherwise
ωc= 2 π
T s
=N ( 2 π
T b )
7
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ρ= A2 T b
2η
SN Re=10 log10 [ A2 Tb
2 η ]
The maximum data rate is given as,
Eb =π0
0
T
s0
2 ( t ) dt+ π1
0
T
s1
2 ( t ) dt
To obtain the probability of error,
Pb=erfc ( Eb
N0 ) [ 1 1
2 erfc ( Eb
N 0 ) ]
Part C
It is observed that an increased in the rb value causes a pb value decrease. The illustration below
expounds on the relationship,
QUESTION 4
Part A
For an M-ary PSK modulation
ϕi ( t ) =Acos ( ωc t+θi ) 0<t T s
θi =0 , 2 π
M , , 2 ( M1 ) π
M
8
Document Page
sϕ ( ω ) = A2 T s S a2
[ ( ωωc ) T s
2 ]
T b= T s
log2 M
Pϵ 2 erfc 2 Es
η sin2 π
M m>2
Pϵ 2 erfc 2 Es
η sin2 π
2 M
Γ =
sin2 π
M
sin2 π
2 M
-5 0 5 10 15 20
Es/No, dB
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
Symbol Error Rate
Symbol error probability curve for QPSK
aplha=0
aplha=0.15
aplha=0.25
aplha=0.35
aplha=0.45
Part B
9
Document Page
-5 0 5 10 15 20
Es/No, dB
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
Symbol Error Rate
Symbol error probability curve for QPSK
aplha=0
aplha=0.15
aplha=0.25
aplha=0.35
aplha=0.45
QUESTION 5
Efficiency of 0.55
EIR Ptransmit =10 log ( Ptransmitter ) Transmitte rfeede rloss
+Transmitte r Antennagain
Antenn apointin gloss
(dBW )
EIR Ptransmit =10 log 100.5 dB+45.210.70
EIR Ptransmit =54.01 dB
Gr
T s [ dB
K ] =4 dB/ K
10
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Pr =Pt (1|Γt |2
. gt . ( λ
4 πd )2
. 1
αm . Aeff (1|Γr|2
) )
Lbf =20 log10 ( 4 πd
λ )
Lb f uplink
=20 log10
( 4 π36000
c
f )=20 log10 ( 144e6 π
0.01 )
Lb f downlink
=20 log10
( 4 π36000
c
f )=20 log10 ( 144e6 π
0.015 )
Lb f downlink
=209.5884 dB
Part B
P1=Pr {1 bit error|s1 (t)}
¿ Pr {s2 ( t )|s1 ( t ) }+ Pr {s4 ( t )|s1 ( t ) }+ Pr { s8 ( t )|s1 ( t ) }
The autocorrelation is given as,
Rc ( τ ) = 1
T c

Tc
2
T c
2
c ( t ) c ( tτ ) dt
11
Document Page
0 5 10 15
SNR in db
10-10
10-8
10-6
10-4
10-2
100
probability of error
Probability of Error Performance
The receiver output is given as,
d ( t ) c2 (t)=d (t)
Sk ( t )= 2 Eb
T mk ( t ) pk ( t ) cos ( 2 π f c t+ φk )
12
chevron_up_icon
1 out of 12
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]