COMP3821 - Extended Algorithms and Programming Techniques

Verified

Added on  2021/05/28

|3
|1258
|39
AI Summary

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
COMP3821 Assignment 3
Jinming Dong(z5211275)
May 4, 2020
1
1.1
O(2n )
1.2
1.2.1 recursion
initial M [0, · · · , n] ←⊥ to store the value of cut-rod(P,n)
memoized − cut − rod(P, n)
· · · if M [n] 6= then
· · · · · · return M[n]
· · · if n=0 then
· · · · · · q ← 0
· · · else
· · · · · · q ← −∞
· · · · · · for i=1 to n do
· · · · · · · · · q ← max(q, P [i] + memoized − cut − rod(P, n − i))
· · · M [n] ← q
· · · return M[n]
1.2.2 Iteration
memoized − cut − rod(P, n)
· · · let M [0, · · · , n] to store the value of cut-rod(P,n)
· · · M[0] =0
· · · for i=1 to n do
· · · · · · M [i] ← −∞
· · · · · · for j=1 to i do
· · · · · · · · · M [i] ← max(q, P [j] + M [i − j])
· · · return M[n]
1
This study source was downloaded by 100000822526728 from CourseHero.com on 03-31-2021 06:46:33 GMT -05:00
https://www.coursehero.com/file/70008931/a3pdf/
This study resource was
shared via CourseHero.com

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
1.3
O(n2)
1.4
1. Base case:when n=0,a call to memoized-cut-rod(P,n) return 0 and a call
to cut-rod(P,n) return 0,so they return the same result.
2. Induction:when n>0, assume a call to memoized-cut-rod(P,n) returns the
same result as cut-rod(P,n).When n=n+1,a call to memoized-cut-rod(P,n)
returns the max(P [i] + memoized − cut − rod(P, n + 1 − i)), i ∈ {1, · · · , n +
1} and cut-rod(P,n) returns the max(P [i] + cut − rod(P, n + 1 − i)), i ∈
{1, · · · , n+1}.By assumption, memoized-cut-rod(P,x) = cut-rod(P,x) when
x ∈ {0, · · · , n} and n + 1 − i ∈ {0, · · · , n}.So when n=n+1,they return the
same result.
3. Hence,a callto memoized-cut-rod(P,n) returns the same result as cut-
rod(P,n) for any array P of length n ∈ N .
2
2.1
Sequence k
[R, B, R, G, O, O, G, T, I, I, T ]3
[R, G, B, G, R] 1
[C, C, C, C, A, X, B, X] 3
[Z, X, Y, Z, X] 5
[A, BD, C, BD, A] 1
[A, O, A, B, X, Z, Y, X] 6
[A, B, B, A, C, A, B] 4
2.2
subproblems:the minimum number ofsymmetric sequences that make up se-
quence S[1, · · · , i], store the number in M[i].
the base case:M[0]=0.
recurrence relation:M [i] = 1 + min(M [j]),0 ≤ j ≤ i − 1 and S[j + 1, · · · , i]is
symmetric.
2
This study source was downloaded by 100000822526728 from CourseHero.com on 03-31-2021 06:46:33 GMT -05:00
https://www.coursehero.com/file/70008931/a3pdf/
This study resource was
shared via CourseHero.com
Document Page
2.3
The worst-case time complexity:O(n3)
For getting M[i],the algorithm willcheck if S[j + 1, · · · , i]is symmetric which
takes O(i−j) times, 0 ≤ j ≤ i − 1 and choose the minimum M[j].The worst-case
time complexity of the subproblem is O(i2). So the worst-case time complexity
of the algorithm is O(12 + 22, · · · , n2) = O(n3).
3
3.1
x0 x1 x2
1 0 1
0 2 0
3.2
Algorithm(C[1, · · · , n], s)
· · ·count=0
· · ·for x1=0 to s/C[1] do
· · · · · · · · ·for x2=0 to s/C[2] do
· · · · · · · · · · · · · · · ↓
· · · · · · · · · · · · · · ·for xn =0 to s/C[n] do
· · · · · · · · · · · · · · · · · ·if C [1]x1 + C[2]x2+, · · · , +C[n]xn = s then
· · · · · · · · · · · · · · · · · · · · ·count = count+1
· · ·return count
3.3
O(( s
m )n )
3.4
subproblems:let dp[i][j] denotes the the number of natural number to solutions
to the equation (C[1, · · · , i], j), and the answer is dp[n][s], n is the length of C.
base cases:dp[i][0] = 1, i = 1, · · · , n
recurrence relation:dp[i][j] =
P j
c[i]
t=0 dp[i − 1][j − t ∗ C[i]]
return dp[n][s]is the number of naturalnumber solutions to a linear equation
(C, s).
3
This study source was downloaded by 100000822526728 from CourseHero.com on 03-31-2021 06:46:33 GMT -05:00
https://www.coursehero.com/file/70008931/a3pdf/
This study resource was
shared via CourseHero.com
Powered by TCPDF (www.tcpdf.org)
1 out of 3
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]