Relational Database Schema Design

Verified

Added on  2020/05/16

|5
|531
|198
AI Summary
This assignment delves into relational database schema design. It presents a comprehensive schema comprising four tables: CUSTOMER, ORDER, INVENTORY, and ORDER_LINE. Each table is meticulously defined with attributes, data types, primary keys, and foreign keys, illustrating the relationships between different entities in a database system. The assignment also includes a bibliography referencing relevant research papers on database management systems.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Running head: DATABASE MANAGEMENT SYSTEM
Database Management System
Name of the Student
Name of the University
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
1DATABASE MANAGEMENT SYSTEM
Relational Schema:
Table: CUSTOMER
Attribute Data Type Primary Key Foreign
customerID int Yes
firstName varchar (40)
lastName varchar (40)
phone int
email varchar (40)
address varchar (40)
suburb varchar (40)
postcode int
loyaltyDiscount double
Table: ORDER
Attribute Data Type Primary Key Foreign
orderID int Yes
customerID int CUSTOMER
(customerID)
dateOrdered DATE
dateFulfilled DATE
postageAmount decimal(10,2)
discountApplied double
Document Page
2DATABASE MANAGEMENT SYSTEM
Table: INVENTORY
Attribute Data Type Primary Key Foreign
inventoryID int Yes
category Int CATEGORY(categoryID)
title varchar (40)
abstract varchar (500)
yearPublished Year
unitPrice decimal(10,2)
Table: ORDER_LINE
Attribute Data Type Primary Key Foreign
orderID int Yes
inventoryID int Yes INVENTORY
(inventoryID)
dateOrdered DATE
dateFulfilled DATE
postageAmount decimal(10,2)
discountApplied double
Document Page
3DATABASE MANAGEMENT SYSTEM
Bibliography:
de Medeiros, L. F., Priyatna, F., & Corcho, O. (2015). MIRROR: Automatic R2RML mapping
generation from relational databases. In International Conference on Web Engineering
(pp. 326-343). Springer, Cham.
El‐Assady, M., Sevastjanova, R., Gipp, B., Keim, D., & Collins, C. (2017). NEREx: Named‐
Entity Relationship Exploration in Multi‐Party Conversations. In Computer Graphics
Forum (Vol. 36, No. 3, pp. 213-225).
Ferreira, B., Faria, L., Ramalho, J. C., & Ferreira, M. (2016). Database Preservation Toolkit: A
relational database conversion and normalization tool. In iPRES: 13th International
Conference on Digital Preservation.
Mandery, C., Terlemez, O., Do, M., Vahrenkamp, N., & Asfour, T. (2015). The KIT whole-body
human motion database. In Advanced Robotics (ICAR), 2015 International Conference
on (pp. 329-336). IEEE.
Mathias, S. L., Hines-Kay, J., Yang, J. J., Zahoransky-Kohalmi, G., Bologa, C. G., Ursu, O., &
Oprea, T. I. (2013). The CARLSBAD database: a confederated database of chemical
bioactivities. Database, 2013, bat044.
McMinn, P., Wright, C. J., Kinneer, C., McCurdy, C. J., Camara, M., & Kapfhammer, G. M.
(2016, October). SchemaAnalyst: Search-based test data generation for relational
database schemas. In Software Maintenance and Evolution (ICSME), 2016 IEEE
International Conference on (pp. 586-590). IEEE.
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
4DATABASE MANAGEMENT SYSTEM
Pham, M. D., Passing, L., Erling, O., & Boncz, P. (2015). Deriving an emergent relational
schema from rdf data. In Proceedings of the 24th International Conference on World
Wide Web (pp. 864-874). International World Wide Web Conferences Steering
Committee.
chevron_up_icon
1 out of 5
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]