SEO Suggestions for Desklib - Online Library for Study Material

Verified

Added on  2023/06/08

|7
|1614
|101
AI Summary
This article discusses various mathematical problems related to sets, limits, vectors, functions, and asymptotes. It also provides SEO suggestions for Desklib, an online library for study material with solved assignments, essays, dissertations, and more.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Question 1
a) Z : Set of Integers , k =2 ,1,0,1,2 C= {4 ,1,2,5,8 }
A B C={} an empty set
¿
( Z B ) ( A C ¿= { 1,2,3,4,5 } {[ 3,5 ] [4 ,1,2,5,8 ] }={1}
Number line:
BC={4 ,1,1,2,3,4,5,8 }
R ¿=¿
( R ¿ ) ( BC ) ={{4 ,1,1,2,3,4,5,8 }}
b) Consider the following three objects…which of these are functions, and why?
a) Wit h t h e given conditions , f ( x ) is NOT a FUNCTION because 4=±2.
Since A single element of 4 results into two elementst h e c odomain , f ( x ) is not a function .
b)
g ( x ) IS A FUNCTION because eac h elementdomain has aunique element Codomain.
c) h ( x ) IS NOT A FUNCTION .T h isis because some elementsdomain are not mapped ¿
respect elementcodomain . For example , w h en x=0 , h ( x ) does not exist .
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question 2
a) lim
x 3
x2 4 X +3
X 26 X +9
If lim
x a¿f (x) lim
x a+ ¿f ( x)t hen t he limitdoes not exist.¿
¿¿
¿
x2 4 x +3
x26 x+9 = x1
x3
lim
x 3
x2 4 X +3
X 26 X +9 = lim
x 3 +¿ x1
x3 ¿
¿
x1
x3 = ( x1 )1
x3
lim
x a
[f ( x )g( x)]=lim
x a
f ( x)lim
x a
g(x )
lim
x 3+¿ x1
x3 = lim
x 3+¿ (x1 ) lim
x 3+¿ 1
x 3=2 ¿
¿ ¿
¿¿
¿
¿
lim
x 3¿ x24 X +3
X26 X +9 = ¿
¿
, hence t h e limit does not exist
b) lim
x π
2
sin2 x2 sin x +1
sin2 x5 sin x +4
sin2 x2 sin x+1
sin2 x5sin x +4 = sin x1
sin x4
Document Page
lim
x π
2
sin2 x2 sin x +1
sin2 x5 sin x +4 =lim
x π
2
sin x 1
sin x4 =
sin π
2 1
sin π
2 4
=0
c) lim
x
ln¿ ¿ ¿
x is positive w h en x .T hus| x|=x
T h e Limit C h ain Rule States t h at , if lim
u b
f ( u ) =L,lim
x a
g ( x ) =b ,f (x)is
continuous at x=b , t h en lim
x a
f (g ( x ) )=L
g ( x ) =ln ¿ ¿
lim
x
¿ ¿
lim
x
ln u=
Thus lim
x
ln¿ ¿ ¿
d) lim
x+
x24 x +3
x 626 x +9
Dividing t h e function by t h e high est denominator power , we have
1 4
x 3
x2
1 6
x + 9
x2
lim
x+
1 4
x 3
x2
1 6
x + 9
x2
= 100
100 =1
e) lim
x 0¿ x+ x2
x ¿
¿
Multiplying by t h e conjugate of x + x2 , we have x+ x2
x =
0
x x2
x
Document Page
lim
x 0¿ x+ x2
x = lim
x0¿
0
x x2
x = lim
x 0¿ 0
¿ 0¿¿
¿¿
¿
f) lim
x 0+¿ e ( 1
x ) (sin2
( 1
x )+cos2
( 1
x ) )¿
¿
lim
x 0+¿ e ( 1
x ) (sin2
( 1
x )+cos2
( 1
x ) )= lim
x 0+ ¿e( 1
x ) lim
x 0+¿ (sin2 1
x +cos 21
x ) ¿
¿¿
¿ ¿
¿ lim
x 0+¿ e( 1
x )=0 ¿
¿
lim
x 0+¿ (sin2 1
x +cos2 1
x )=1¿
¿
lim
x 0+¿ e ( 1
x ) ( sin2
( 1
x ) +cos2
( 1
x ) )=01=0 ¿
¿
Question 3
a) Let ( 8 ,6 ) be v
Vectiors¿ v areindicated as t v
T h us Vectos¿ v are indicated as t ( 8 ,6 )
¿ ( 8 t ,6 t ) ;{t R { 0 } }
A unit vector is t h e direction of t v is given by t v
¿t v ¿ = t v
( 8 t ) 2 + ( 6 t ) 2 = ( 8 t
10 , 6 t
10 )
¿ ( 4
5 , 3
5 )
T h us t h e vector of lengt h5 direction of v is givenby 5 ( 4
5 ,3
5 )
¿( 4 ,3)
b) Given t h e values of uv , w=2 [ ( 1,1,0 ) (1,0,1 ) ]= ( 2,2,0 ) ( 2,0,2 )
¿( 0,2 ,2)
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
u . w=||u||||w||cos θ
W h ere θ is an ´angle between uw .
||u||= 12 +12 + ( 0 ) 2= 2
||w||= 02 +22 + (2 )2=2 2
u . w= ( 1,1,0 ) . ( 0,2 ,2 )=2
T h us 2= 2 ( 2 2 ) cos θ
cos θ= 2
4 =1
2
θ=cos1 1
2 = π
3
c)
Let us assume t h at x anf y are scalar quantities . Additionally a is a linear combination of uv
suc h t h at ||a||= 3a . w=0 , we have t h at
a=xu+ yv
a= ( 2 x , x+ y , 2 y )
Given t h at a . w=0 , ( 2 x , x + y , 2 y ) . ( 1,2 ,3 ) =0
2 x+2 ( x + y )6 y =0
T h us 4 x4 y=0
x= y
Additionally ,|a|= 3 ,
3=||a||
2
( 2 x )2 + ( x + y ) 2 + ( 2 y ) 2=3
Given t h at x= y ,
Document Page
4 x2 + 4 x2+ 4 x2=3
12 x2=3
x=± 1
4 =± 1
2
y=x =± 1
2
T h us possible values of a are :
a=xu+ yu=xu+ xv
¿ x (u+v)
x [ ( 2,1,0 ) + ( 0,1,2 ) ] =x (2,2,2)
W h en x= 1
2 , a=1
2 ( 2,2,2 )=(1,1,1)
W h en x=1
2 , a=1
2 ( 2,2,2 ) =(1 ,1 ,1)
T h us possible values of a are ( 1,1,1 )(1 ,1 ,1)
Question 4
a) Suppose A= { 0,1 }B= { 0,1 , } , T h en AB have infinitely many numbers¿
A B={0,1}
b)
T h ere are numbers two sets t h at has infinitely many numbers w h o se unition is { 0,1 } . T h is is
because aof sets t h at have infinitely many numbers must have .
c) Suppose A= { 0,12,3,4 , }B= { 2,3,4 , } , t h en A ¿= { 0,1 } .
Question 5
Document Page
a) Suppose f ( x )=cot θ , t h en lim
x 0¿ cot θ , lim
x 0+¿ cot θf (0 )does not exist¿
¿¿
¿
b) T h ere is no function g ( x ) suc h g ( 0 ) , t h e rig h t¿ exist are different .
c) Suppose we have a function f ( x ) =
2
1+ex +1
( x2 ) ( x3 ) ( x5 ) ,t h en f ( x ) has 2 h orizontal
asymptotes at y=1 y =3 ,3 vertical asymptotes at x=2,35
d) A function cannot have more than 2 horizontal asymptotes. That is, the maximum
number of horizontal asymptotes that a function can have is 2. Thus you cannot create a
function with exactly 3 different asymptotes and three different vertical asymptotes.
e) Suppose we ha ve a piecewise f ( x ) = {0 ; x= 01
x ; ot h erwise } ,
t h en t h e function is discontinuousat every integer
Question 6
Suppose A= {100,2,3 } , B= { 0 ,200,2 } ,C= ( 0,0 ,300 ) an d D= {1,1,1 ) ,
T h en t h e ˙product between any two of t h ese four is negative . For Example ,
A . B=1001+21+31=95
chevron_up_icon
1 out of 7
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]