ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Desklib - Online Library for Study Material with Solved Assignments

Verified

Added on  2023/06/13

|16
|1767
|171
AI Summary
Desklib is an online library for study material with solved assignments, essays, dissertations, etc. It offers a wide range of study materials for various subjects and courses. This article covers topics such as mathematics, functions, graphs, and velocity.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Running head: MATHEMATICS 1
Mathematics
Name
Institution

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATHEMATICS 2
Question 1
Part a
f ( t )= A ekt (t 1)
Whent=2 hours , f (t)=195
When t=10 hours , f (t)=98
195= A e2 t (i)
98=A e10t (ii)
Dividing equation ( i )by equation ( ii ) we obtain
195
98 = A e2k
A e10 k
195
98 =e2 k10 k=e8 k
lne8 k =ln ( 195
98 )
8 k =ln ( 195
98 )
k =ln ( 195
98 ) ÷ ( 8 ) =0.086
Substituting t into equation 1 we get
195= A e2 k
Document Page
MATHEMATICS 3
A=195
e2 k = 195
e2(0.086) =231.599
A=232 ,k =0.086 (¿ 3 sf )
Part b
giventhat f ( t )=3=A ekt
232 e0.086 t=3
e0.086 t = 3
231
ln (e0.086 t )=ln ( 3
232 )
0.086 t=ln ( 3
232 )=4.3481
t=4.3481
0.086 =50.56 hrs 51 hours
Question 2
52 x
3 x +4 <0
52 x=0 , x= 5
2
3 x+ 4=0 , x=4
3
x 4
3 x=4
3
4
3 < x < 5
2 x= 5
2 x > 5
2
52 x + + + 0 -
Document Page
MATHEMATICS 4
3 x+ 4 - 0 + + +
52 x
3 x +4
- undefined + 0 -
From the table, we chose the ranges that satisfy the required conditions. That is,
x 4
3 x > 5
2
Question 3
Part a(i)
f ( x)=x2 + 4 x+1
f ( x )=(x +a)2b=x2+2 xa+(a¿ ¿2b) ¿
x2=x2 , 2 xa=4 x ,1=(a ¿¿ 2b) ¿
2 xa=4 x ,a=2
1=(a¿ ¿2b)=(2¿¿ 2b)¿ ¿
1=4b , b=3
f ( x )=(x +2)2 3
Part a(ii)
The graph of f ( x)=x2 + 4 x+1can be obtained from f ( x)=x2 by a vertical stretch of 4 followed
by a vertical translation of +1 unit.
Part a(iii)
The image set of f ( x ) is undefined since we don’t have the range of x.

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATHEMATICS 5
Part b(i)
A graph of g ( x )=x2+ 4 x +1 for (2 x 2)
( x ) -2 -1 0 1 2
g ( x ) -3 -2 1 6 13
The image set of g ( x ) is g (2 x 2 ) ={3,13 }
Part b(ii)
Document Page
MATHEMATICS 6
Inverse of g ( x )=x2+4 x +1 for (2 x 2)
y=x2 +4 x+1
Interchanging the variables
x= y2 +4 y +1
y2 +4 y+ ( 1x )=0
Using the quadratic formula,
y=b ± b24 ac
2 a =4 ± 424(1)(1x )
2(1)
y=4 ± 12+4 x
2 =4 ± 4( 3+x)
2 =4 ± 2 (3+x )
2 =2± x+3
g ' ( x )=2+ x+ 3 or g ' ( x )=2 x +3
The domain of the function is x 3. That is, (2 x 2)
The image set of g '( x ) is
g' (2 )=2+ 2+3=1, g' (2 )=2+ 2+3=0.236, g' ( x ) =[1 ,0.236 ]
Or
g' (2 )=2 2+3=3
g' (2 )=2 2+3=4.236
g' ( x ) =[3 ,4.236]
Part b(iii)
Document Page
MATHEMATICS 7
A sketch of y=g1 (x)
( x ) g ' ( x ) ¿ g ' ( x )
-2 -1 -3
-1 -0.586 -3.414
0 -0.268 -3.732
1 0 -4
2 0.236 -4.236

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATHEMATICS 8
Question 4
Part a
cos ( 5 π
12 ), 3 π
4 , π
3
3 π
4 = 3 π × 3
4 ×3 = 9 π
12
Document Page
MATHEMATICS 9
π
3 = π ×4
3 × 4 = 4 π
12
sin ( 3 π
4 )=sin ( 9 π
12 )= 2
2
cos ( 3 π
4 )=cos ( 9 π
12 )= 2
2
5 π
12 = 9 π
12 4 π
12
sin ( 4 π
12 )= 3
2
cos ( 4 π
12 )=1
2
Using the identity
cos ( AB )=cosAcosB+ sinAsinB
cos ( 5 π
12 ) =cos ( 9 π
12 ) cos ( 4 π
12 ) +sin ( 9 π
12 ) sin ( 4 π
12 )
¿ 2
2 ( 1
2 )+ 2
2 ( 3
2 )= 6
4 2
4 = 6 2
4
Part b
sin ( 5 π
12 )using half angle identity for sine} ¿ cos ( 5 π
6 )
cos ( 5 π
6 )= 3
2
Document Page
MATHEMATICS 10
5 π
12 = ( 5 π
6 )
2
sin ( 5 π
12 )=sin ( ( 5 π
6 )
2 )
But we know, sin ( A
2 )= 1cosA
2
sin ( 5 π
12 )=sin ( ( 5 π
6 )
2 )= 1cos ( 5 π
6 )
2 = 1 ( 3
2 )
2 = ( 1+ 3
2 )
2 = 2+ 3
2
Part c
cos ( 5 π
12 )= 6 2
4
sin ( 5 π
12 )= 2+ 3
2
cos2 θ+ sin2 θ=1
cos2
(5 π
12 )+sin2
( 5 π
12 )= ( 6 2
4 )2
+ ( 2+ 3
2 )2
¿ 62 12+2
16 + 2+ 3
4
¿ 82 4 (3)
16 + 2+ 3
4
¿ 84 (3)
16 + 2+ 3
4

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATHEMATICS 11
¿ 84 ( 3 ) +4 ( 2+ 3 )
16
¿ 84 3+8+ 4 3
16 = 8+84 3+4 3
16 =16
16 =1
Question 5
Part a
Drone
30 km h1 at a bearing of 65 °
xcomponent =30 sin 65=27.19 km h1
ycomponent=30 cos 65=12.68 km h1
~
d=27.19 ~i+12.68 ~j
Wind
10 km h1 ¿ SE(that is towards NW )
Document Page
MATHEMATICS 12
xcomponent =10 sin 45=7.07 km h1
ycomponent=10 cos 45=7.07 kmh1
~w=7.07 ~
i+ 7.07 ~
j
Part b
Resultant velocity ¿ ~
d +~w
¿ ( 27.19 ~i+ 12.68 ~j ) + (7.07 ~i+ 7.07 ~j )
¿ 20.12 ~
i+19.75 ~
j
Part c
magnitude= 20.122 +19.752=28.19 km h1
tanθ= 20.12
19.75 =1.018734
θ=tan1 1.018734=45.53 46 °
The resultant velocity of the drone is 28.19 km h1 at a bearing of 046 °
Question 6
f ( x )=x3 + 9
4 x2 3 x2
Part (a)
To get the stationary points, we determine the 1st derivative of the curve and then equate it to
zero as follows:
Document Page
MATHEMATICS 13
df
dx = d
dx ( x3 + 9
4 x2 3 x2
) =3 x2 + 9 ( 2 )
4 x3 3
¿ 3 x2 9
2 x3 3
3 x2 9
2 x3 3=0
We multiply the equation by 2 x3 and simplify to get
(3 x ¿¿ 2 9
2 x3 3=0)2 x3 =6 x596 x3 =0 ¿
( x5x3 )= 9
6 =1.5
x5x3=1.5
Solving the above equation we obtain, x=1.29826
At x=1.29826 , f ( x )=1.298263 + 9
4 ×1.298262 3 ( 1.29826 )2=2.3717
Hence, the stationary point is ( 1.29826 ,2.3717 )
Part b
To determine whether the stationary point is a maximum or a minimum we choose values on
either sides of the turning point and evaluate the derivatives as summarized in the table below.
df
dx =3 x2 9
2 x3 3

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATHEMATICS 14
When x=1 x=1.29826 when x=2
df
dx
4.5(negative) 0 8.4375( positive)
Sign ¿ ¿ ¿
Therefore, we can see that ( 1.29826 ,2.3717 )is a minimum point.
Part c
f ( x )=x3 + 9
4 x2 3 x2
x -2 -1.5 -1 0 0.5 1 1.298 2
f ( x ) -3.438 0.125 2.25 undefined 0.5625 -1.75 -2.372 0.563
f ( x ) has no y-intercept.
A graph of f ( x )=x3 + 9
4 x2 3 x2 is shown below.
Document Page
MATHEMATICS 15
Document Page
MATHEMATICS 16
Part d
In the interval [-3,2] f ( x ) has the least value at x=3. That is,
f ( 3 ) =(3)3+ 9
4 (3)2 3 ( 3 ) 2=19.75
However, the largest value approaches infinity (+ ) as x approaches zero.
Question 7
s ( t ) =t3 12t2 +8 t(t 0)
Part a
Velocity=v (t )= ds ( t )
dt = d
dt ( t312 t2+ 8t )=3t212(2)t1 +8
v ( t ) =3 t224 t +8
At t=2
v ( 2 )=3(2)224 ( 2 ) +8=28 m s1
Part b
Acceleration=a ( t )= dV (t )
dt = d
dt ( 3 t2 24 t+ 8 )=3 ( 2 ) t24+ 0
a ( t )=6 t24
Acceleration is zero at t=4 and the minimum velocity at t=4 equals
v ( 4 )=3(4 )224 ( 4 ) +8=40. Hence, the velocity decreases for 0 t 4
1 out of 16
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]