ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

SEO for Desklib: Title, Meta Title, Meta Description, Slug, Summary, Subject, Course Code, Course Name, College/University

Verified

Added on  2023/06/03

|11
|1930
|230
AI Summary
This text provides guidance on optimizing Desklib's online library for SEO purposes. It includes suggestions for title, meta title, meta description, slug, summary, subject, course code, course name, and college/university.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Q2)
The reflection on the line x2 = 2x1
Substituting a = 2, to obtain a standard matrix T2
Ta = 1
1+a2 [ 1a2 2 a
2 a a21 ]
= 1
1+ 22 [ 122 22
22 221 ]
= 1
5
[ 3 4
4 3 ] => A
When x2 = 1/3 x1
A = 1/3
Standard matrix of the matrix T1/3
Ta = 1
1+a2 [1a2 2 a
2 a a21 ]
= 1
1+ 1
3
2
[1 1
3
2 2
3
2
3
1
3
2
1 ]
= 1
10
9 [ 1 1
9
2
3
2
3
1
9 1 ]
= 9
10 [ 8
9
2
3
2
3
8
9 ]
= 1
10 [8 6
6 8 ] => B

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Given T: |R2 R2 corresponds to reflection through the line x2 = 2x1 followed by reflection
through line x2 = 1/3 x1.
Substituting the value of A and B, the standard matrix will be
T = B * A
A = 1
5 [3 4
4 3 ]
B = 1
10 [ 8 6
6 8 ]
Therefore,
T = 1
10
[ 8 6
6 8 ]1
5 [3 4
4 3 ]
= 1
50 [ 0 50
50 0 ]
C = [ 0 1
1 0 ]
For any (x, y)R2
T(x, y) = C( x
y )
Substituting for the value of C
T(x, y) = [ 0 1
1 0 ] ( x
y )
T(x, y) = (y, x)
This is a reflection on line y = x
Document Page
b)
T: ¿ R3 R3
T corresponds to a rotation in anticlockwise by an angle of θ
Therefore,
T(a*,b*) = (a1, b1)
Shown on the sketch below
a = rcos
b = rsin
and
a1 = rcos ( θ+ )
b2 = rsin ( θ+ )
Therefore,
cos (a+ b)=cos a cos b+sin a sin b
a1 = r cos θ cos rsinθ sin
a1 = a cos θbsin θ
b1 = rsin ( θ+ )
Document Page
Therefore,
sin(a+b)=sin a cos b+sin a cos b
= rsinθcos +rcos sinθ
Where
a = rcos
b = rsin
b1 = bcosθ +asinθ
TƟ(a, b) = (a1, b1)
TƟ(a, b) =(acosθ bsinθ ,bcosθ +asinθ ¿ ¿
a = 1, b = 0
substituting
T(1, 0) =(1cosθ0sinθ , 0cosθ+ 1sinθ¿ ¿ = ¿)
= cos θ ( 1,0 )+sin θ (0,1)
Where, a = 0 and b = 1, when substituted
T(0, 1) =(0cosθ1sinθ , 1cosθ+0sinθ¿ ¿
= ¿)
= ¿)
Standard matrix for T
T = [cos θ sin θ
sin θ cos θ ]
Matrix has the intended effect of leaving all points on the x – axis, are of the form (x1, 0)
T(x1, 0) = (cos θ sin θ
sinθ cos θ )(x 1
0 )
= (x1cosθ+0sin θ ,x1 sinθ+0cos θ)
T(x1, 0) = (x1cosθ ,x1sinθ)

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
When θ=0
Substituting to T(x1, 0)
Therefore, cos θ=1sin θ=0
So,
T(x1, 0) =(x1, 0)
= (x1x1, x1x0)
T(x1, 0) =(x1, 0)
That unvariant under T
c)
let T :R5 R4 be the linear transformation
T(x1, x2, x3, x4, x5) = (x1 + x4 + 5x5 – x1 – x3, x2 + 2x3, 2x3, 2x1 – 2x2-2x3)
We know that
B = {e1, e2, e3, e4, e5} is the standard order for |R5
B1 = {e1, e2, e3, e4} is the standard order for |R4
T(e1) = T(1, 0, 0, 0, 0) = (1, -1, 0, 2)
= 1*e1 – 1*e2 + 0*e3 + 2*e4
T(e2) = T(0, 0,, 1, -2) = (1, -1, 0, 2)
= 0*e1 – 0*e2 + 1*e3 - 2*e4
T(e3) = T(0, 0, 1, 0, 0) = (0, -1, 2, 3)
= 0*e1 – 1*e2 + 2*e3 + 3*e4
T(e4) = T(0, 0, 0, 1, 0) = (4, 0, 0, 0)
= 4*e1 +0*e2 + 0*e3 + 0*e4
T(e5) = T(0, 0, 0, 0, 1) = (0, 5, 0, 0)
= 0*e1 +5*e2 + 0*e3 + 0*e4
Document Page
Presenting the information in matrix form
{ T } B1
B =
[ 1 0 0
1 0 1
0 1 2
4 0
0 5
0 0
2 2 2 0 0 ]
{ T } B1
B has four linearly independent rows
Rank T = 4 =dim= ¿ R4
T is onto
From rank – Nullity
Rank T + Nullity T = dim¿ R5=5
Nullity T = 1 0
T is therefore not one to one
Q4)
a) Let A = [0 0 0
1 0 0
0 1 0 ]
A2 = A * A = [ 0 0 0
1 0 0
0 1 0 ]
[ 0 0 0
1 0 0
0 1 0 ]
A2 = [0 0 0
0 0 0
1 0 0 ]
A3 = [ 0 0 0
0 0 0
1 0 0 ]
[ 0 0 0
1 0 0
0 1 0 ] = [ 0 0 0
0 0 0
0 0 0 ]
i) A3 = 0
ii) I – A = [1 0 0
0 1 0
0 0 1 ] [0 0 0
1 0 0
0 1 0 ]=
[ 1 0 0
1 1 0
0 1 1 ]
Document Page
I + A + A2 = [1 0 0
0 1 0
0 0 1 ]+
[0 0 0
1 0 0
0 1 0 ]+ [0 0 0
0 0 0
1 0 0 ]=
[1 0 0
1 1 0
1 1 1 ]
(I-A)(I + A+ A2) = [ 1 0 0
1 1 0
0 1 1 ]
[1 0 0
1 1 0
1 1 1 ]= [1 0 0
0 1 0
0 0 1 ] = I
I + A + A2 = I
(1 A)= ( I A )1
Hence
( I A ) 1=I + A+ A2= [ 1 0 0
0 1 0
0 0 1 ]
b) if we take A4 = 0
then
I2 – A4 = I
(I – A2) (I – A2) = I
(I – A2) (I – A2) = I
I + A = ( I A ) 1
( I A )1=(I + A2 )(I+ A2)
( I A) ( I A )1=(I A)( I+ A)(I + A2 )
= ( I A2 )( I + A2) = I 2 A4
Since I2 = I and we took A4 = 0
( I A ) ( I A )1 =I
Q6)
a) From the figure below volume of box is equivalent:

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
V = s*s * h
Therefore,
4 = s2h
h = 4
s2
So
Surface area of box is:
A = 4( h*s) + 2(s*s)
A = 2(s2 + 2s*h)
Writing the value of h in terms of s
A = 2(s2 + 2s * 4
s2 )
A = 2(s2 + 8
s ¿
b) Minimizing the value of A
da
ds =0
d
ds (2 (s2+ 8
s ))=0
2* d
ds ( s2 + 8
s ) =0
Document Page
2*(2s - 8
s2 ¿=0
2s - 8
s2 =0
2s = 8
s2 =0
S3 = 8/2 = 4
S = 3
4
d2 A
d s2 = d
ds (2 s 8
s2 )
= 2 + 16
s3
At, s= 3
4
d2 A
d s2 =2+ 16
( 3
4 )
3
= 2 + 4 = 6
Second derivative at s = 3
4 is positive
The minimum value of A at s = 3
4
The value of h that minimizes A is
h = 4
s2 = 4
( 3
4 )
2
=
4
4
2
3
= 41/3
Document Page
Q7)
F(x) =
0
x
t3
t2+7 dt
Using fundamental theorem of calculus
a) F1(x) = x3
x2 +7 , where, 1
x2 +7 >0 , x ( , )
F1(x) < 0, for x < 3
F1(x) > 0, for x > 3
Therefore,
F(x) is increasing in (3 , )
F(x) is decreasing in (, 3)
b)
F11(x) = x2 +7 ( x3 ) 2 x
( x2 +7 ) 2 = x2+72 x2 +6 x
( x2 +7 ) 2
F11(x) = x2+6 x +7
¿ ¿
therefore 1
( x2+7 ) 2 >0, for all x (, )
concave upward F11(x) > 0, -x2 + 6x + 7 > 0
x2 - 6x - 7 < 0
(x-7)(x+1) < 0
x (1 , 7)
concave downward F11(x) < 0, -x2 + 6x + 7 < 0
x2 - 6x - 7 > 0
(x-7)(x+1) < 0

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Therefore,
x (,1) ( 7 , )
1 out of 11
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]