MAT260 Assignment: Sums, Coefficients, and Combinatorial Proofs
VerifiedAdded on 2023/06/15
|10
|2178
|295
Homework Assignment
AI Summary
This assignment solution covers several problems in combinatorics, including evaluating sums using the binomial theorem, finding coefficients in multinomial expansions, and proving combinatorial identities. Specifically, it evaluates a sum involving binomial coefficients and powers of -10, determines the coefficient of a term in the expansion of a multinomial expression, proves a combinatorial identity using set theory reasoning, and demonstrates an inductive proof. Furthermore, it finds the generating function for a given sequence and applies the multinomial theorem. The document concludes with a problem related to arranging letters with repetitions. Desklib provides this and other solved assignments to aid students in their studies.

Solution 1 :
To evaluatae the sum of
∑
k=0
n
¿ ¿
Using binomial theoerem we can have
( x + y )n=∑
k=0
n
(n
k ) xn−k yk
Now here x=1,y=-10
( 1−10 )n=∑
k=0
n
(n
k )1n−k (−10)k
(−9 )n=∑
k=0
n
(n
k )(−10)k
(−9 )n=∑
k=0
n
¿ ¿
Hecne we got final answer as
∑
k=0
n
¿ ¿
Solution 2 :
To find the coefficient of
u2 v3 z3 ∈ ( 3 uv−2 z+u+v )7
If we expand this then we get
2187*u^7*v^7 + 5103*u^7*v^6 + 5103*u^7*v^5 + 2835*u^7*v^4 + 945*u^7*v^3 + 189*u^7*v^2 +
21*u^7*v + u^7 + 5103*u^6*v^7 - 10206*u^6*v^6*z + 10206*u^6*v^6 - 20412*u^6*v^5*z +
8505*u^6*v^5 - 17010*u^6*v^4*z + 3780*u^6*v^4 - 7560*u^6*v^3*z + 945*u^6*v^3 -
To evaluatae the sum of
∑
k=0
n
¿ ¿
Using binomial theoerem we can have
( x + y )n=∑
k=0
n
(n
k ) xn−k yk
Now here x=1,y=-10
( 1−10 )n=∑
k=0
n
(n
k )1n−k (−10)k
(−9 )n=∑
k=0
n
(n
k )(−10)k
(−9 )n=∑
k=0
n
¿ ¿
Hecne we got final answer as
∑
k=0
n
¿ ¿
Solution 2 :
To find the coefficient of
u2 v3 z3 ∈ ( 3 uv−2 z+u+v )7
If we expand this then we get
2187*u^7*v^7 + 5103*u^7*v^6 + 5103*u^7*v^5 + 2835*u^7*v^4 + 945*u^7*v^3 + 189*u^7*v^2 +
21*u^7*v + u^7 + 5103*u^6*v^7 - 10206*u^6*v^6*z + 10206*u^6*v^6 - 20412*u^6*v^5*z +
8505*u^6*v^5 - 17010*u^6*v^4*z + 3780*u^6*v^4 - 7560*u^6*v^3*z + 945*u^6*v^3 -
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

1890*u^6*v^2*z + 126*u^6*v^2 - 252*u^6*v*z + 7*u^6*v - 14*u^6*z + 5103*u^5*v^7 -
20412*u^5*v^6*z + 8505*u^5*v^6 + 20412*u^5*v^5*z^2 - 34020*u^5*v^5*z + 5670*u^5*v^5 +
34020*u^5*v^4*z^2 - 22680*u^5*v^4*z + 1890*u^5*v^4 + 22680*u^5*v^3*z^2 - 7560*u^5*v^3*z +
315*u^5*v^3 + 7560*u^5*v^2*z^2 - 1260*u^5*v^2*z + 21*u^5*v^2 + 1260*u^5*v*z^2 - 84*u^5*v*z +
84*u^5*z^2 + 2835*u^4*v^7 - 17010*u^4*v^6*z + 3780*u^4*v^6 + 34020*u^4*v^5*z^2 -
22680*u^4*v^5*z + 1890*u^4*v^5 - 22680*u^4*v^4*z^3 + 45360*u^4*v^4*z^2 - 11340*u^4*v^4*z +
420*u^4*v^4 - 30240*u^4*v^3*z^3 + 22680*u^4*v^3*z^2 - 2520*u^4*v^3*z + 35*u^4*v^3 -
15120*u^4*v^2*z^3 + 5040*u^4*v^2*z^2 - 210*u^4*v^2*z - 3360*u^4*v*z^3 + 420*u^4*v*z^2 -
280*u^4*z^3 + 945*u^3*v^7 - 7560*u^3*v^6*z + 945*u^3*v^6 + 22680*u^3*v^5*z^2 -
7560*u^3*v^5*z + 315*u^3*v^5 - 30240*u^3*v^4*z^3 + 22680*u^3*v^4*z^2 - 2520*u^3*v^4*z +
35*u^3*v^4 + 15120*u^3*v^3*z^4 - 30240*u^3*v^3*z^3 + 7560*u^3*v^3*z^2 - 280*u^3*v^3*z +
15120*u^3*v^2*z^4 - 10080*u^3*v^2*z^3 + 840*u^3*v^2*z^2 + 5040*u^3*v*z^4 - 1120*u^3*v*z^3 +
560*u^3*z^4 + 189*u^2*v^7 - 1890*u^2*v^6*z + 126*u^2*v^6 + 7560*u^2*v^5*z^2 - 1260*u^2*v^5*z
+ 21*u^2*v^5 - 15120*u^2*v^4*z^3 + 5040*u^2*v^4*z^2 - 210*u^2*v^4*z + 15120*u^2*v^3*z^4 -
10080*u^2*v^3*z^3 + 840*u^2*v^3*z^2 - 6048*u^2*v^2*z^5 + 10080*u^2*v^2*z^4 -
1680*u^2*v^2*z^3 - 4032*u^2*v*z^5 + 1680*u^2*v*z^4 - 672*u^2*z^5 + 21*u*v^7 - 252*u*v^6*z +
7*u*v^6 + 1260*u*v^5*z^2 - 84*u*v^5*z - 3360*u*v^4*z^3 + 420*u*v^4*z^2 + 5040*u*v^3*z^4 -
1120*u*v^3*z^3 - 4032*u*v^2*z^5 + 1680*u*v^2*z^4 + 1344*u*v*z^6 - 1344*u*v*z^5 + 448*u*z^6 +
v^7 - 14*v^6*z + 84*v^5*z^2 - 280*v^4*z^3 + 560*v^3*z^4 - 672*v^2*z^5 + 448*v*z^6 - 128*z^7
Finally
coefficient of u2 v3 z3 ∈ ( 3 uv−2 z+u+ v )7 is-10080
Solution 3 :
Let S be a set with three distinguished elements a, b, and c and count certain k-subsets of S .
The number of k-subsets of S can be taken as (n
k )
Also the number of k-subsets of S - { a , b , c } is ( n−3
k )
Then the LHS is the number of k-subsets of S that contains at least of the elements of {a, b, c}.
Such k-subsets can be divided into 3 types :
(i) the k-subsets that contain the element a.
(ii) the k-subsets that do not contain a but contain b.
(iii) the k-subsets that do not contain a, b but contain c.
20412*u^5*v^6*z + 8505*u^5*v^6 + 20412*u^5*v^5*z^2 - 34020*u^5*v^5*z + 5670*u^5*v^5 +
34020*u^5*v^4*z^2 - 22680*u^5*v^4*z + 1890*u^5*v^4 + 22680*u^5*v^3*z^2 - 7560*u^5*v^3*z +
315*u^5*v^3 + 7560*u^5*v^2*z^2 - 1260*u^5*v^2*z + 21*u^5*v^2 + 1260*u^5*v*z^2 - 84*u^5*v*z +
84*u^5*z^2 + 2835*u^4*v^7 - 17010*u^4*v^6*z + 3780*u^4*v^6 + 34020*u^4*v^5*z^2 -
22680*u^4*v^5*z + 1890*u^4*v^5 - 22680*u^4*v^4*z^3 + 45360*u^4*v^4*z^2 - 11340*u^4*v^4*z +
420*u^4*v^4 - 30240*u^4*v^3*z^3 + 22680*u^4*v^3*z^2 - 2520*u^4*v^3*z + 35*u^4*v^3 -
15120*u^4*v^2*z^3 + 5040*u^4*v^2*z^2 - 210*u^4*v^2*z - 3360*u^4*v*z^3 + 420*u^4*v*z^2 -
280*u^4*z^3 + 945*u^3*v^7 - 7560*u^3*v^6*z + 945*u^3*v^6 + 22680*u^3*v^5*z^2 -
7560*u^3*v^5*z + 315*u^3*v^5 - 30240*u^3*v^4*z^3 + 22680*u^3*v^4*z^2 - 2520*u^3*v^4*z +
35*u^3*v^4 + 15120*u^3*v^3*z^4 - 30240*u^3*v^3*z^3 + 7560*u^3*v^3*z^2 - 280*u^3*v^3*z +
15120*u^3*v^2*z^4 - 10080*u^3*v^2*z^3 + 840*u^3*v^2*z^2 + 5040*u^3*v*z^4 - 1120*u^3*v*z^3 +
560*u^3*z^4 + 189*u^2*v^7 - 1890*u^2*v^6*z + 126*u^2*v^6 + 7560*u^2*v^5*z^2 - 1260*u^2*v^5*z
+ 21*u^2*v^5 - 15120*u^2*v^4*z^3 + 5040*u^2*v^4*z^2 - 210*u^2*v^4*z + 15120*u^2*v^3*z^4 -
10080*u^2*v^3*z^3 + 840*u^2*v^3*z^2 - 6048*u^2*v^2*z^5 + 10080*u^2*v^2*z^4 -
1680*u^2*v^2*z^3 - 4032*u^2*v*z^5 + 1680*u^2*v*z^4 - 672*u^2*z^5 + 21*u*v^7 - 252*u*v^6*z +
7*u*v^6 + 1260*u*v^5*z^2 - 84*u*v^5*z - 3360*u*v^4*z^3 + 420*u*v^4*z^2 + 5040*u*v^3*z^4 -
1120*u*v^3*z^3 - 4032*u*v^2*z^5 + 1680*u*v^2*z^4 + 1344*u*v*z^6 - 1344*u*v*z^5 + 448*u*z^6 +
v^7 - 14*v^6*z + 84*v^5*z^2 - 280*v^4*z^3 + 560*v^3*z^4 - 672*v^2*z^5 + 448*v*z^6 - 128*z^7
Finally
coefficient of u2 v3 z3 ∈ ( 3 uv−2 z+u+ v )7 is-10080
Solution 3 :
Let S be a set with three distinguished elements a, b, and c and count certain k-subsets of S .
The number of k-subsets of S can be taken as (n
k )
Also the number of k-subsets of S - { a , b , c } is ( n−3
k )
Then the LHS is the number of k-subsets of S that contains at least of the elements of {a, b, c}.
Such k-subsets can be divided into 3 types :
(i) the k-subsets that contain the element a.
(ii) the k-subsets that do not contain a but contain b.
(iii) the k-subsets that do not contain a, b but contain c.

The numbers k-subsets of type (i), type (ii), type (iii) are
( n−1
k−1 ) , ( n−2
k−1 ) , ( n−3
k −1 )
( n
k ) −
( n−3
k )= ( n−1
k −1 ) + ( n−2
k −1 ) + ( n−3
k −1 )
Hence proved
Solution 4 :
To prove
∑
k =1
n
(n
k )( n
k−1 )= (2 n+2
n+1 )
2 −(2 n
n )
LHS:
∑
k =1
n
(n
k )( n
k−1 )
As
( n
k ) =
( n
k−1 )
So
∑
k =1
n
(n
k )2
¿−
( 2 n
n ) ( n
n+1 )
2
RHS:
( n−1
k−1 ) , ( n−2
k−1 ) , ( n−3
k −1 )
( n
k ) −
( n−3
k )= ( n−1
k −1 ) + ( n−2
k −1 ) + ( n−3
k −1 )
Hence proved
Solution 4 :
To prove
∑
k =1
n
(n
k )( n
k−1 )= (2 n+2
n+1 )
2 −(2 n
n )
LHS:
∑
k =1
n
(n
k )( n
k−1 )
As
( n
k ) =
( n
k−1 )
So
∑
k =1
n
(n
k )2
¿−
( 2 n
n ) ( n
n+1 )
2
RHS:
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

( 2 n+2
n+1 )
2 −
( 2 n
n )
1
2 (2 n+2
n+ 1 )− (2 n
n )
1
2
( 2n+ 2 ) !
( n+1 ) ! ( n+ 1 ) ! − ( 2 n ) !
( n ) ! ( n ) !
1
n !n! ( 1
2
( 2 n+2 ) !
( n+1 ) ( n+1 ) − ( 2 n ) !
1 )
1
n ! n! ( 1
2
( 2 n+2 ) ( 2 n+1 ) 2 n !
( n+1 ) ( n+1 ) − ( 2 n ) !
1 )
2 n !
n ! n! (1
2
2 (2n+ 1)
( n+1 ) ( n+1 ) −1 )
2 n !
n ! n! ( (2 n+1)
( n+1 ) ( n+ 1 ) −1 )
2 n !
n ! n! (2 n+1−n2−1−2n
( n+1 )2 )
¿ 2 n !
n! n! ( −n2
( n+ 1 )2 )
¿ 2 n !
n! n! ( n
n+ 1 )2
¿−( 2 n
n ) ( n
n+1 )
2
Hence LHS=RHS
Solution 5
n+1 )
2 −
( 2 n
n )
1
2 (2 n+2
n+ 1 )− (2 n
n )
1
2
( 2n+ 2 ) !
( n+1 ) ! ( n+ 1 ) ! − ( 2 n ) !
( n ) ! ( n ) !
1
n !n! ( 1
2
( 2 n+2 ) !
( n+1 ) ( n+1 ) − ( 2 n ) !
1 )
1
n ! n! ( 1
2
( 2 n+2 ) ( 2 n+1 ) 2 n !
( n+1 ) ( n+1 ) − ( 2 n ) !
1 )
2 n !
n ! n! (1
2
2 (2n+ 1)
( n+1 ) ( n+1 ) −1 )
2 n !
n ! n! ( (2 n+1)
( n+1 ) ( n+ 1 ) −1 )
2 n !
n ! n! (2 n+1−n2−1−2n
( n+1 )2 )
¿ 2 n !
n! n! ( −n2
( n+ 1 )2 )
¿ 2 n !
n! n! ( n
n+ 1 )2
¿−( 2 n
n ) ( n
n+1 )
2
Hence LHS=RHS
Solution 5
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser


⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

Solution 6 :
Given that
0, 0, 0, 0, 6, -6, 6, -6, 6, -6, . . …….
Assume the generating function
f ( x ) =a0 +a1 x+ a2 x2 +a3 x3 +a4 x4 + ¿…………………………………………….
But, the given sequence is {0, 0, 0, 0, 6, -6, 6, -6, 6, -6……}. Using this sequence, the expression above
becomes,
f ( x )=0+0 x+ 0 x2 +0 x3 +6 x4−6 x5 +¿……………………………………..
= 0 +0 + 0 + 0 + 6 x4 −6 x5 + ……………………………….
= 6 x4 −6 x5
= 6 x4 ¿
= Accordingly, f ( x )= 6 x4 ¿is the generating function for the given sequence {0, 0, 0, 0, 6, -6, 6, -6, 6, -
6……}.
Given that
0, 0, 0, 0, 6, -6, 6, -6, 6, -6, . . …….
Assume the generating function
f ( x ) =a0 +a1 x+ a2 x2 +a3 x3 +a4 x4 + ¿…………………………………………….
But, the given sequence is {0, 0, 0, 0, 6, -6, 6, -6, 6, -6……}. Using this sequence, the expression above
becomes,
f ( x )=0+0 x+ 0 x2 +0 x3 +6 x4−6 x5 +¿……………………………………..
= 0 +0 + 0 + 0 + 6 x4 −6 x5 + ……………………………….
= 6 x4 −6 x5
= 6 x4 ¿
= Accordingly, f ( x )= 6 x4 ¿is the generating function for the given sequence {0, 0, 0, 0, 6, -6, 6, -6, 6, -
6……}.
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

Solution 7 :
Now
By induction assume
1+ 1
√ 2 + 1
3 + 1
√ 4 +… ..+ 1
√ n > 2 ( √ n+1−1 ) … … … … … … .(1)
1+ 1
√2 + 1
3 + 1
√4 +… ..+ 1
√n + 1
√n+1 > 2 ( √n+1−1 ) + 1
√n+1
So if we proves
1+ 1
√2 + 1
3 + 1
√4 +… ..+ 1
√n + 1
√n+1 > 2 ( √n+1−1 ) + 1
√n+1
1+ 1
√2 + 1
3 + 1
√4 +… ..+ 1
√n + 1
√ n+1 > 2 ( n+ 1− √n+1 ) +1
From 1 by substitution
2 ( √n+2−1 ) > ( 2 n+3− √n+1 )
2 ( √ n+2 ) > ( 2 n+5− √ n+1 )
( 2 n+3 ) 2 > 4(n2+3 n+ 2)
Hence our identity holds for (1)
Same is true for
1+ 1
√ 2 + 1
3 + 1
√ 4 +… ..+ 1
√ n < 2 ( √ n )
Hence we have prove
Solution 8 :
Using binomial theoerem we can have
Now
By induction assume
1+ 1
√ 2 + 1
3 + 1
√ 4 +… ..+ 1
√ n > 2 ( √ n+1−1 ) … … … … … … .(1)
1+ 1
√2 + 1
3 + 1
√4 +… ..+ 1
√n + 1
√n+1 > 2 ( √n+1−1 ) + 1
√n+1
So if we proves
1+ 1
√2 + 1
3 + 1
√4 +… ..+ 1
√n + 1
√n+1 > 2 ( √n+1−1 ) + 1
√n+1
1+ 1
√2 + 1
3 + 1
√4 +… ..+ 1
√n + 1
√ n+1 > 2 ( n+ 1− √n+1 ) +1
From 1 by substitution
2 ( √n+2−1 ) > ( 2 n+3− √n+1 )
2 ( √ n+2 ) > ( 2 n+5− √ n+1 )
( 2 n+3 ) 2 > 4(n2+3 n+ 2)
Hence our identity holds for (1)
Same is true for
1+ 1
√ 2 + 1
3 + 1
√ 4 +… ..+ 1
√ n < 2 ( √ n )
Hence we have prove
Solution 8 :
Using binomial theoerem we can have

( x + y )n=∑
k=0
n
(n
k ) xn−k yk
Now as we have
∑
i=1
n
i4 = n(n+1)(2 n+1)(3 n3 +3 n−1)
30
∑
i=1
n
i5= ( 1
6 )n6 + ( 1
2 )n5+ ( 5
12 )n4 −( 1
12 )n2
Solution 9
According to Multinomial theorem ,
Total powers sum is 4.
(a+ b+c )4 = ( 4
4 0 0 ) a4 +
( 4
3 1 0 ) a3 b1 +¿ …………………….. + ( 4
0 0 4 )c4
a4 +4 a3 b+ 4 a3 c +6 a2 b2 +6 a2 c2 +12 a2 bc+4 a b3+ ¿12
12 a b2 c+ 12abc2 +4 a c3 +b4 + 4 b3 c+6 b2 c2 + 4 b c3+c4
Solution 10 :
D, I ,S, C, R, E ,T ,E ,M ,A, T, H, E,, M ,A ,T ,I C ,S ,I, S, R, E, A, L ,L, Y ,F ,U ,N consist of
{E4,A3,I3,S3,T3,C2,L2,M2,R2,D,F,H,N,U,Y}
Total distinct ways to arrange the letters = ( 4+3 × 4+2 × 4+ 6) !
4 ! 3!4 2!4 1!4 =
532995876358730104320000000
All these words don't appear consecutively, in that
order 532995876358730104319999999 ways
k=0
n
(n
k ) xn−k yk
Now as we have
∑
i=1
n
i4 = n(n+1)(2 n+1)(3 n3 +3 n−1)
30
∑
i=1
n
i5= ( 1
6 )n6 + ( 1
2 )n5+ ( 5
12 )n4 −( 1
12 )n2
Solution 9
According to Multinomial theorem ,
Total powers sum is 4.
(a+ b+c )4 = ( 4
4 0 0 ) a4 +
( 4
3 1 0 ) a3 b1 +¿ …………………….. + ( 4
0 0 4 )c4
a4 +4 a3 b+ 4 a3 c +6 a2 b2 +6 a2 c2 +12 a2 bc+4 a b3+ ¿12
12 a b2 c+ 12abc2 +4 a c3 +b4 + 4 b3 c+6 b2 c2 + 4 b c3+c4
Solution 10 :
D, I ,S, C, R, E ,T ,E ,M ,A, T, H, E,, M ,A ,T ,I C ,S ,I, S, R, E, A, L ,L, Y ,F ,U ,N consist of
{E4,A3,I3,S3,T3,C2,L2,M2,R2,D,F,H,N,U,Y}
Total distinct ways to arrange the letters = ( 4+3 × 4+2 × 4+ 6) !
4 ! 3!4 2!4 1!4 =
532995876358730104320000000
All these words don't appear consecutively, in that
order 532995876358730104319999999 ways
⊘ This is a preview!⊘
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

1 out of 10
Related Documents
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
Copyright © 2020–2025 A2Z Services. All Rights Reserved. Developed and managed by ZUCOL.





