Analyzing Solutions of Chebyshev's Equation and Polynomials

Verified

Added on  2023/06/06

|8
|1661
|342
Homework Assignment
AI Summary
This assignment provides detailed solutions to problems involving Chebyshev's equation and polynomial analysis. It begins by identifying regular singular points of a given differential equation and then delves into the Chebyshev polynomials, defining them and demonstrating their orthogonality. The solution further explores eigenvalue problems, deriving eigenvalues and corresponding eigenfunctions. The document also addresses non-homogeneous equations and boundary conditions. The final section discusses the transformation of a second-order differential equation and its properties. Desklib is mentioned as a resource for students seeking more solved assignments and past papers.
Document Page
Q1i)
Given Chebyshev’s equation
(1 – x2)y’’ – xy’ + α2y = 0
A point x0 is said to be a regular singular point of DE y’’ + p(x)y’ + Q(x)y = 0. If the functions p
(x) = (x – x0)P(x) and q(x) = (x – x0)2 Q(x) are both analytic at x0’’
y’’ - x
(1x2 ) y’ + 2 α
(1x2 ) y = 0
y’’ - x
( x1)(1+ x) y’ + 2 α
(x1)(1+ x) y = 0
here,
P(x) = x
(x1)(1+x)
Q(x) = 2 α
( x1)(1+ x)
y’’ –P(x)y’ + Q(x)y = 0
Q1ii)
The Chebyshev’s polynomial o degree n 0 is defined as
Tn(x) = cos(ncos-1(x)), x [-1, 1]
Tn(x) = cos(nθ) , where x = cosθ, θ ϵ [0 , π ]

1
1
( 2 x )
1
2 T m(x) * Tn(x)dx
= -
π
0
cos ( ) cos ( ) [ since , dθ= dx
1x2 ]
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
=
0
π
1
2 [cos {( n+m) θ }¿+ cos {(nm)θ }] ¿
= 1
2 [ sin ( n+m ) θ
n+ m + sin ( nm ) θ
nm ]π
0
= 1
2 [ { sin ( n+m ) π
n+m + sin ( nm ) π
nm }{ sin 0
n+m + sin 0
nm }
] , m n
= 1
2 [ ( 0+0 ) ( 0+ 0 ) ]
= 0
Hence ,

1
1
( 1x2 )
1
2T m(x)*Tn(x)dx = 0, when m n
Q2)
u’’ + λu = 0
u’(0) = u’(1) = 0
so r2 + λ = 0
r = λ ¿
+¿ ¿ ¿ = i λ ¿
+¿ ¿ ¿
so u(n) = c1cos( λn) + c2sin( λn)
using the first boundary condition u(0) = 0
therefore 0 = c1
So,
u(n) = c2sin( λn)
u’(n) = c2 λ * cos( λ n)
using the second boundary condition u’(1) = 0
Document Page
c2 λ * cos(1 λ)
1 λ=π
2 , 3 π
2
2n+1
2 π , n is an integer
So,
λ=2 n+1
21 π
Therefore, λn = ( 2n+ 1 )2
4 π2, n is integer
So, u(n) = c2sin( 2n+ 1
2 πn ¿
For λ = 0, u’’ = 0, u(0) = 0, u’(1) = 0
u(n) = c1 + c2n
u(0) = 0, c1 = 0
u(n) = c2(n)
u’(n) = c2 => u’(1) = 0 => 0 = c2
so, λ = 0, can not be an eigenvalue for this problem
now λ < 0
r = λ ¿
+¿ ¿ ¿ ,
so, u(n) = c1cosh( λ n ¿ + c2sinh( λ n ¿
u(0) = 0
0 = c1cosh(0 ¿ + c2sinh(0 ¿
0 = c1(1) + c2(0)
c1 = 0
so, u(n) = c2sinh(λ n ¿
Document Page
now, u’(n) = c2λ*cosh(λ n ¿
for, u’(1) = 0
0 = c2λ*cosh(1 λ ¿
0 = c2λ*cosh( λ ¿
cosh( λ ¿ = 0
cosh(n0) 0, for any n => c2 = 0
since both c1 and c2 = 0, so for λ > 0, there is no eigenvalues
So the eigenvalues are;
Therefore, λn = ( 2n+ 1 )2
4 π2, n is an integer
And the corresponding eigenfunction is
u(x) = c2sin( (2 n+1)
2 πn)
Q3)
u’’ + ku = F(x)
u’(0) = u’(1) = 0
so r2 + k = F(x)
r = F ( x ) k ¿+¿ ¿ ¿ = i F ( x ) k ¿+¿ ¿ ¿
so u(n) = c1cos( F ( x )kn) + c2sin( F ( x ) kn)
using the first boundary condition u(0) = 0
therefore 0 = c1
So,
u(n) = c2sin( F ( x ) kn)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
u’(n) = c2k * cos( F ( x )k n)
using the second boundary condition u’(1) = 0
c2k * cos(1 F ( x ) k )
1 F ( x ) k=π
2 , 3 π
2
2n+1
2 π , n is an integer
So,
F ( x )k = 2n+1
21 π
Therefore, F(x) -kn = ( 2n+ 1 ) 2
4 π2, n is integer
Whre, F(x) = x
So, u(n) = c2sin( 2n+ 1
2 πn ¿
For k = 0, u’’ = 0, u(0) = 0, u’(1) = 0
u(n) = c1 + c2n
u(0) = 0, c1 = 0
u(n) = c2(n)
u’(n) = c2 => u’(1) = 0 => 0 = c2
so, k = 0, cannot be an eigenvalue for this problem
now k < 0
r = F ( x ) k ¿+¿ ¿ ¿
so, u(n) = c1cosh( F ( x )k n ¿ + c2sinh( F ( x )k n ¿
u(0) = 0
Document Page
0 = c1cosh(0 ¿ + c2sinh(0 ¿
0 = c1(1) + c2(0)
c1 = 0
so, u(n) = c2sinh((F ( x )k )n
now, u’(n) = c2 k*cosh( (F ( x ) k ¿) n ¿
for, u’(1) = 0
0 = c2(F ( x )k ¿) ¿*cosh(1 ( F ( x )k ¿) ¿
0 = c2(F ( x )k ¿) ¿*cosh((F ( x )k ¿) ¿
cosh( F ( x ) k= 0
cosh(n0) 0, for any n => c2 = 0
since both c1 and c2 = 0, so for k > 0, there is no eigenvalues
So the eigenvalues are;
Therefore, x - kn = ( 2n+ 1 ) 2
4 π2, n is an integer
And the corresponding eigen function is
u(x) = c2sin( (2 n+1)
2 πn)
Q4)
(p(x)y’)’ – q(x)y + λr(x)y = 0
y = ρsinθ
py’ = ρ cos θ
θ'= 1
p cos2 θ+ ( λrq ) sin2 θ
boundary condition are
Document Page
a1y(0) + a2y’(0) = 0
b1y(1) + b2y’(1) = 0
initial condition are
a1sinθ ( 0 ) + a 2
p(0) cosθ ( 0 )=0
0 θ ( 0 ) < π
tanθ(1 , λ)= b 2
b 1 p (1)
θ'= 1
p cos2 θ+ ( λrq ) sin2 θ
At θ'=0
1
p cos2 θ= ( λrq ) sin2 θ
- 1
p ( λr q ) = sin2 θ
cos2 θ
- 1
p ( λr q ) =tan2 θ
( λr q ) =p tan2 θ
p tan2 θ+ q
r = λ
Hence, shows that θ ( 1 , λ ) is an increasing function of λ
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
chevron_up_icon
1 out of 8
circle_padding
hide_on_mobile
zoom_out_icon