Solutions to Differential Equations with Boundary Conditions

Verified

Added on  2023/06/06

|8
|1661
|342
AI Summary
This article provides detailed solutions to differential equations with boundary conditions for regular singular points, Chebyshev's equation, eigenvalues and eigenfunctions, and more. It covers topics such as Chebyshev’s polynomial, eigenvalues and eigenfunctions, and boundary conditions for differential equations.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Q1i)
Given Chebyshev’s equation
(1 – x2)y’’ – xy’ + α2y = 0
A point x0 is said to be a regular singular point of DE y’’ + p(x)y’ + Q(x)y = 0. If the functions p
(x) = (x – x0)P(x) and q(x) = (x – x0)2 Q(x) are both analytic at x0’’
y’’ - x
(1x2 ) y’ + 2 α
(1x2 ) y = 0
y’’ - x
( x1)(1+ x) y’ + 2 α
(x1)(1+ x) y = 0
here,
P(x) = x
(x1)(1+x)
Q(x) = 2 α
( x1)(1+ x)
y’’ –P(x)y’ + Q(x)y = 0
Q1ii)
The Chebyshev’s polynomial o degree n 0 is defined as
Tn(x) = cos(ncos-1(x)), x [-1, 1]
Tn(x) = cos(nθ) , where x = cosθ, θ ϵ [0 , π ]

1
1
( 2 x )
1
2 T m(x) * Tn(x)dx
= -
π
0
cos ( ) cos ( ) [ since , dθ= dx
1x2 ]

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
=
0
π
1
2 [cos {( n+m) θ }¿+ cos {(nm)θ }] ¿
= 1
2 [ sin ( n+m ) θ
n+ m + sin ( nm ) θ
nm ]π
0
= 1
2 [ { sin ( n+m ) π
n+m + sin ( nm ) π
nm }{ sin 0
n+m + sin 0
nm }
] , m n
= 1
2 [ ( 0+0 ) ( 0+ 0 ) ]
= 0
Hence ,

1
1
( 1x2 )
1
2T m(x)*Tn(x)dx = 0, when m n
Q2)
u’’ + λu = 0
u’(0) = u’(1) = 0
so r2 + λ = 0
r = λ ¿
+¿ ¿ ¿ = i λ ¿
+¿ ¿ ¿
so u(n) = c1cos( λn) + c2sin( λn)
using the first boundary condition u(0) = 0
therefore 0 = c1
So,
u(n) = c2sin( λn)
u’(n) = c2 λ * cos( λ n)
using the second boundary condition u’(1) = 0
Document Page
c2 λ * cos(1 λ)
1 λ=π
2 , 3 π
2
2n+1
2 π , n is an integer
So,
λ=2 n+1
21 π
Therefore, λn = ( 2n+ 1 )2
4 π2, n is integer
So, u(n) = c2sin( 2n+ 1
2 πn ¿
For λ = 0, u’’ = 0, u(0) = 0, u’(1) = 0
u(n) = c1 + c2n
u(0) = 0, c1 = 0
u(n) = c2(n)
u’(n) = c2 => u’(1) = 0 => 0 = c2
so, λ = 0, can not be an eigenvalue for this problem
now λ < 0
r = λ ¿
+¿ ¿ ¿ ,
so, u(n) = c1cosh( λ n ¿ + c2sinh( λ n ¿
u(0) = 0
0 = c1cosh(0 ¿ + c2sinh(0 ¿
0 = c1(1) + c2(0)
c1 = 0
so, u(n) = c2sinh(λ n ¿
Document Page
now, u’(n) = c2λ*cosh(λ n ¿
for, u’(1) = 0
0 = c2λ*cosh(1 λ ¿
0 = c2λ*cosh( λ ¿
cosh( λ ¿ = 0
cosh(n0) 0, for any n => c2 = 0
since both c1 and c2 = 0, so for λ > 0, there is no eigenvalues
So the eigenvalues are;
Therefore, λn = ( 2n+ 1 )2
4 π2, n is an integer
And the corresponding eigenfunction is
u(x) = c2sin( (2 n+1)
2 πn)
Q3)
u’’ + ku = F(x)
u’(0) = u’(1) = 0
so r2 + k = F(x)
r = F ( x ) k ¿+¿ ¿ ¿ = i F ( x ) k ¿+¿ ¿ ¿
so u(n) = c1cos( F ( x )kn) + c2sin( F ( x ) kn)
using the first boundary condition u(0) = 0
therefore 0 = c1
So,
u(n) = c2sin( F ( x ) kn)

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
u’(n) = c2k * cos( F ( x )k n)
using the second boundary condition u’(1) = 0
c2k * cos(1 F ( x ) k )
1 F ( x ) k=π
2 , 3 π
2
2n+1
2 π , n is an integer
So,
F ( x )k = 2n+1
21 π
Therefore, F(x) -kn = ( 2n+ 1 ) 2
4 π2, n is integer
Whre, F(x) = x
So, u(n) = c2sin( 2n+ 1
2 πn ¿
For k = 0, u’’ = 0, u(0) = 0, u’(1) = 0
u(n) = c1 + c2n
u(0) = 0, c1 = 0
u(n) = c2(n)
u’(n) = c2 => u’(1) = 0 => 0 = c2
so, k = 0, cannot be an eigenvalue for this problem
now k < 0
r = F ( x ) k ¿+¿ ¿ ¿
so, u(n) = c1cosh( F ( x )k n ¿ + c2sinh( F ( x )k n ¿
u(0) = 0
Document Page
0 = c1cosh(0 ¿ + c2sinh(0 ¿
0 = c1(1) + c2(0)
c1 = 0
so, u(n) = c2sinh((F ( x )k )n
now, u’(n) = c2 k*cosh( (F ( x ) k ¿) n ¿
for, u’(1) = 0
0 = c2(F ( x )k ¿) ¿*cosh(1 ( F ( x )k ¿) ¿
0 = c2(F ( x )k ¿) ¿*cosh((F ( x )k ¿) ¿
cosh( F ( x ) k= 0
cosh(n0) 0, for any n => c2 = 0
since both c1 and c2 = 0, so for k > 0, there is no eigenvalues
So the eigenvalues are;
Therefore, x - kn = ( 2n+ 1 ) 2
4 π2, n is an integer
And the corresponding eigen function is
u(x) = c2sin( (2 n+1)
2 πn)
Q4)
(p(x)y’)’ – q(x)y + λr(x)y = 0
y = ρsinθ
py’ = ρ cos θ
θ'= 1
p cos2 θ+ ( λrq ) sin2 θ
boundary condition are
Document Page
a1y(0) + a2y’(0) = 0
b1y(1) + b2y’(1) = 0
initial condition are
a1sinθ ( 0 ) + a 2
p(0) cosθ ( 0 )=0
0 θ ( 0 ) < π
tanθ(1 , λ)= b 2
b 1 p (1)
θ'= 1
p cos2 θ+ ( λrq ) sin2 θ
At θ'=0
1
p cos2 θ= ( λrq ) sin2 θ
- 1
p ( λr q ) = sin2 θ
cos2 θ
- 1
p ( λr q ) =tan2 θ
( λr q ) =p tan2 θ
p tan2 θ+ q
r = λ
Hence, shows that θ ( 1 , λ ) is an increasing function of λ

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
1 out of 8
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]