ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Engineering Mathematics 1

Verified

Added on  2023/06/11

|11
|1417
|131
AI Summary
This document contains solved problems on Engineering Mathematics 1 including topics like differentiation, integration, optimization, and population growth. Each problem is solved step-by-step with explanations. The course code, course name, and university are not mentioned.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Engineering Mathematics 1
Engineering Mathematics
Student’s Name
Course
Professor’s Name
University
City (State)
Date

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Engineering Mathematics 2
Engineering Mathematics
Question 1
Part a
y= 2 x43 x
4 x1
dy
dx =
( 4 x1 ) d
dx ( 2 x4 3 x ) ( 2 x43 x ) d
dx ( 4 x1 )
( 4 x1)2
d
dx ( 4 x 1 )=4
d
dx (2 x43 x )=8 x33
dy
dx =(4 x1)(8 x33) ( 2 x4 3 x ) 4
( 4 x1)2 =¿ ¿
¿ 8 x4 +12 x +32 x412 x8 x3+3
(4 x 1)2
¿ 24 x48 x3 +3
(4 x1)2
Part b
y=6 cos ( x3 +3)
dy
dx =6 d
dx cos ( x3 +3)
Let x3+3=u so that y=6 cos u
Document Page
Engineering Mathematics 3
dy
du =6 sinu=6 sin (x3+ 3)
du
dx = d
dx (x3 +3)=3 x2
dy
dx = dy
du × du
dx =6 sin ( x3 +3 ) × 3 x2 =18 x2 sin ( x3+3 )
dy
dx =18 x2 sin ( x3+ 3 )
Part c
y= ( 4 x2e2 x ) sin ( 3 x )
We apply the product rule, ( f . g ) '=f ' g+ f g'
f =4 x2e2 x
f '= d
dx ( 4 x2 ) d
dx ( e2 x ) =8 x2 e2 x
g=sin ( 3 x )
g '= d
dx sin ( 3 x ) =3 cos (3 x)
dy
dx =f ' g+f g' = ( 8 x 2 e2 x ) sin ( 3 x )+ 3(4 x2e2 x)cos (3 x )
Question 2
angular displacement ,θ=0.5 t4t3
Part a
Document Page
Engineering Mathematics 4
angular velocity=
dt = d
dt ( 0.5 t4 t3 )=4 ( 0.5 ) t3 3 t2=2t33 t2
When t=2 , angular velocity=2( 2)33 ( 2 )2=1612=4 rad s1
Part b
angular acceleration= d2 θ
d t2 = d
dt ( 2 t3 3 t2 ) =6 t2 6 t
When t=3 , angular acceleration=6 ( 3 ) 26 ( 3 ) =36 rad s2
Part c
angular acceleration=6 t26 t=0
t ( 6 t6 )=0 , t=06 t6=0 , 6 t=6 ,t= 6
6 =1 s
Therefore, acceleration is zero when t=0when t =1 s
Question 3
Part a
The resulting rectangular sheet and open box are shown in figure 1 and figure 2.

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Engineering Mathematics 5
Part b
Volume=9000 x390 x2+4 x3
Volume=L× W × H=(1202 x )(752 x)( x )
¿( 1202 x)(75 x2 x2)
¿ 120 ( 75 x2 x2 ) 2 x (75 x2 x2 )
¿ 9000 x240 x2150 x2 + 4 x3
V =9000 x 39 0 x2 +4 x3
Part c
Volume is maximum when dV
dx =0. That is,
dV
dx = d
dx ( 9000 x390 x2+ 4 x3 )=0
d
dx ( 9000 x390 x2+ 4 x3 )=9000780 x+12 x2=0
Using the quadratic formula,
x= 780 ± 78024(12)(9000)
2(12) = 780± 420
24 =32.5± 17.5
x=32.5+17.5=50x=32.517.5=15
The width of the box is 752 x. When x=50, width equals 752 ( 50 )=25 implying that
x=50 should be ignored. Therefore, the volume is maximum when x=15 mm
Document Page
Engineering Mathematics 6
Question 4
Part a
(5 x2 + x 4
x2 )dx=(5 x2+ x
1
2 4 x2)dx
¿ 5 x2 dx + x
1
2 dx4 x2 dx
¿ 5 x2+1
2+1 + x
1
2 +1
1
2 + 1
4 x2+1
2+1
¿ 5 x3
3 + x
3
2
3
2
4 x1
1
¿ 5 x3
3 + 2
3 x
3
2 + 4 x1
¿ 5
3 x3+ 2
3 x
3
2 + 4
x +C
Part b
[cos ( x
2 )sin ( 3 x
2 ) ] dx= cos ( x
2 )dxsin ( 3 x
2 )dx
¿
( 1
1
2 ) sin ( x
2 ) +
( 1
3
2 ) cos ( 3 x
2 )
¿ 2 sin ( x
2 )+ 2
3 cos ( 3 x
2 )+C
Document Page
Engineering Mathematics 7
Part c

1
5
s
s2+4 ds
¿ evaluating , s
s2+ 4 ds welet s2 + 4=u so that,
du
ds =2 s , ds= du
2 s
s
s2+ 4 ds= s
u × du
2 s = 1
2 u du=1
2 1
u du= 1
2 u
1
2 du
¿ 1
2 ( 1
1
2 +1 )u
1
2 +1
= 1
2 ( 1
1
2 )u
1
2 =u
1
2 = u= s2 +4

1
5
s
s2+4 ds=¿ s2 +4¿1
5 = 52+ 4 12+ 4= 29 5=3.149096 ¿
Question 5
Part a
y= 1
x , x=2x=6
The area bounded by the curve and the lines is shaded in the figure below.

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Engineering Mathematics 8

2
6
1
x dx=¿ lnx¿2
6 =ln 6ln 2=1.09861 square units ¿
Part b
The sketch of the curve y=sin ( x ) for 0 x 2 π the lines x=0 , x=1.7 π is shown in the figure
below. The region bounded is shaded in blue.
Shaded area=
0
π
sin (x )dx+
π
1.7 π
( 0sin ( x ) ) dx
Document Page
Engineering Mathematics 9
¿
0
π
sin (x) dx
π
1.7 π
sin (x)dx
¿¿ cos ( x )¿0
π ¿ ¿
¿¿ cos ( x )¿0
π +¿ cos ( x )¿π
1.7 π ¿¿
¿¿
¿¿
¿ 2+0.5878+1=3.5878
Therefore, area ¿ 3.5878 square units
Question 6
Part a
Population per year=50 t2100 t
3
2
Population after t years=(50t2100 t
3
2 )dt=50 t3
3 100 t
5
2
5
2
+C
¿ 50
3 t34 0 t
5
2 +C
Initial population P ( 0 )=C=25000
Therefore , thetotal population after t years=50
3 t3 40 t
5
2 + 25000
Part b
Document Page
Engineering Mathematics 10
Population after 25 years=50
3 ( 25 )340 ( 25 )
5
2 +25000
¿ 781250
3 40(3125)+2500 0
¿ 260416.7125000+ 2500 0
¿ 160416.7 160417 people
Question 7
5 xcos ( 4 x ) dx=5 xcos ( 4 x ) dx
Let x=u , du=dxdv=cos (4 x ) so that,
v= c os (4 x )dx= 1
4 sin (4 x)
xcos ( 4 x ) dx=udv=uv vdu
uv vdu= x
4 sin ( 4 x ) 1
4 sin ( 4 x ) dx= x
4 sin ( 4 x ) + 1
16 cos (4 x )
5 xcos ( 4 x ) dx=5 ( x
4 sin ( 4 x )+ 1
16 cos ( 4 x ) )+C
¿ 5
4 x sin ( 4 x ) + 5
16 cos ( 4 x ) +C

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Engineering Mathematics 11
1 out of 11
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]