Engineering Mathematics | Assignment

Verified

Added on  2022/09/24

|34
|2379
|19
AI Summary

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
MATHEMATICS 1
ENGINEERING MATHEMATICS
by Student’s Name
Course Name
Professor’s Name
University Name
City, State
Date

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATHEMATICS 2
QUESTION 3
a) (sin θ+cos θ ¿2 -2 sin θ cos θ = 1
Solution
Manipulating left side
(sin θ+cos θ ¿2 -2 sin θ cos θ
Apply perfect square formula: (a +b)2 = a2+2ab+b2
a = cos θ and b = sin θ
= cos2θ + 2cos θ sin θ + sin2θ
= cos2θ + 2cos θ sin θ + sin2θ -2cos θ sin θ
Add similar elements: 2cos θ sin θ -2cos θ sin θ =0
= cos2θ + sin2θ
Use the following identity cos2x + sin2x = 1
Hence cos2θ + sin2θ = 1
(sin θ+cos θ ¿2 -2 sin θ cos θ = 1 is True
b) tanθ cosecθ = secθ
Solution
Manipulating the left side
tanθ cosecθ
Using the basic trigonometric identity cosec x = 1
sin x
Document Page
MATHEMATICS 3
= tanθ * 1
sinθ
Use the following identity: tan x = sinx
cos x
= sinθ
cos θ * 1
sinθ
Cancel the like terms
= 1
cos θ from identity: 1
cos θ = secθ
= secθ which is true
Therefore tanθ cosecθ = secθ
c) cosecθ(1-cosθ)(1+cosθ) = sinθ
Solution
Manipulating left side
cosecθ(1-cosθ)(1+cosθ)
Use the following identity: cosec x = 1
sin x
= 1
sin θ (1-cosθ)(1+cosθ)
Use the following identity: (1-cosθ)(1+cosθ) = 1-cos2θ
= 1
sin θ (1-cos2θ)
Simplify (1-cos2θ) = sin2θ
= 1
sin θ sin2θ
Document Page
MATHEMATICS 4
= sinθ which is true
Therefore cosecθ(1-cosθ)(1+cosθ) = sinθ
d) cotθ secθ tan θ (1sin2 θ) = 1
Solution
Manipulating left side
cotθ secθ tan θ(1sin2 θ)
Simplify
(1sin2 θ) = cosθ
= 1
tanθ * 1
cosθ * tanθ * cosθ
Cancel the like terms
= 1 which is true
Therefore cotθ secθ tan θ (1sin2 θ) = 1
e) 1
sec2 θ + 1
cosec2 θ =1
Solution
Manipulating left side
1
sec2 θ + 1
cosec2 θ
Express with sin, cos
Using the basic trigonometric identity cosec x = 1
sin x

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATHEMATICS 5
=
1
( 1
sinθ ) 2 +
1
( 1
cosθ )2
Simplify by apply exponent rule and fraction rule
=
1
( 1
cosθ )2 = cos2
θ and
1
( 1
sinθ ) 2 = sin2
θ
= cos2θ + sin2
θ
Use the following identity: cos2θ + sin2
θ = 1
= 1 two sides could take the same form
Hence 1
sec2 θ + 1
cosec2 θ =1
f) secθ – cosθ = sinθtanθ
Solution
Manipulating left side
secθ – cosθ
Express with sin, cos
Using the basic trigonometric identity sec x = 1
cos x
= - cos θ + 1
cos θ
Simplify and applying exponent rule
= cos θcosθ
cos θ + 1
cos θ
Since denominators are equal, combine the fraction:
Document Page
MATHEMATICS 6
= cos2 θ+1
cos θ
= 1cos2 θ
cos θ
Use the following identity: 1cos2 x = sin2 x
= sin2 θ
cos θ
Use the following identity: sinx
cos x = tan x
= sin θtanθ which is true
Hence secθ – cosθ = sin θtanθ
g) sin2θ + 2cos2θ = 2- sin2θ
Solution
Manipulating left side
sin2θ + 2cos2θ
Use the following identity: cos2 x = 1- sin2 x
= sin2θ + 2(1- sin2 θ)
Expand: 2(1- sin2 θ)
= 2- 2 sin2 θ
= sin2θ + 2- 2 sin2 θ
Simplify and group like terms
= sin2θ - 2sin2 θ+2
Document Page
MATHEMATICS 7
Add similar elements:sin2θ - 2sin2 θ = - sin2θ
= - sin2θ + 2
= 2- sin2θ which is true
Therefore sin2θ + 2cos2θ = 2- sin2θ
h) tanθ + cotθ = 1
sin θcosθ
Solution
Manipulating the left side
tanθ + cotθ
Express with sin, cos:
= cosθ
sin θ + tanθ
Using the basic trigonometric identity tan x = sin x
cos x
= cosθ
sin θ + sin θ
cos θ
Simplify above
cosθ
sin θ = cos2 θ
sin θcosθ and sin θ
cos θ = sin2 θ
sin θcosθ
= cos2 θ
sin θcosθ + sin2 θ
sin θcosθ
Since the denominator are equal, combine the fraction
= cos2 θ+sin2 θ
sin θcosθ

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATHEMATICS 8
Use the following identity: cos2 x +sin2 x = 1
= 1
sin θcosθ which is true
Therefore tanθ + cotθ = 1
sin θcosθ
QUESTION 4
a) sec x = 2
Solution
sec x = 2, 0 x 3600
General solution for sec x = 2
x=600 +3600 n, x=3000 +3600 n
Solutions for range 0 x 3600
x=600, x=3000
b) cot x = 3
Solution
cot x = 3, 0 x 3600
General solution for sec x = 3
x=300 +1800 n,
Solutions for range 0 x 3600
Document Page
MATHEMATICS 9
x=300, x=2100
c) cosec x = 2
Solution
cosec x = 2, 0 x
cosec x can’t be greater than one for real solutions
No solution for x R
d) sec x = 1.2
Solution
sec x = 1.2, 0 x 3600
General solution for sec x =1.2
sec x=a x = arcsec a + 3600 n, x= 3600 –arcsec a + 3600 n
x = arcsec 1.2 + 3600 n, x= 3600 –arcsec 1.2 + 3600 n
Solutions for range 0 x 3600
x=0.58568, x=5.69749
e) cot x =3
Solution
cot x = 3, 0 x 3600
General solution for cot x =3
cot x=a x = arccot a + 1800 n
x = arccot 3 + 1800 n
Document Page
MATHEMATICS 10
Solutions for range 0 x 3600
x= arccot 3, x= arccot 3 + 1800 n
Solution in decimal form
x=0.3215, x=0.32175…..+180
f) cosec x =1
Solution
cosec x =1, 0 x
General solution for cosec x =1
Solve ec x = 0 + 2πn
x= 2 πn
ec
Solutions for range 0 x
No solution for x R
QUESTION 5
a) cosecθ- sinθ = cotθ cosθ
Solution
Manipulating left side
cosecθ - sinθ
Using the basic Trigonometric identity cosec x = 1
sin x
= 1
sin θ – sinθ

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATHEMATICS 11
Simplify above
Since sinθ = sinθsinθ
sin θ
= 1
sin θ sinθsinθ
sin θ since denominators are equal we combine
= 1sinθsinθ
sin θ
= 1sin2 θ
sin θ apply following identity 1-sin2x = cos2x
= cos2 θ
sin θ use the following identity cosx
sinx =cot x
= cosθ cotθ which is true
cosecθ- sinθ = cotθ cosθ is true
b) cos2θ-sin2θ=2 cos2θ-1
Solution
Manipulating left side
cos2θ-sin2θ
Using the following identity factor sin2x =1-cos2x
= - (1- cos2θ) + cos2θ
Distribute parentheses
= -1-(- cos2θ)
Apply minus-plus rule
-(-a)=a, -(a)=-a
Document Page
MATHEMATICS 12
= -1+ cos2θ
= -1+ cos2θ + cos2θ
Add similar elements
= -1+2 cos2θ which is true
cos2θ-sin2θ=2 cos2θ-1
c) cosec2 θ+sec2 θ= cosec2 θsec2 θ
Solution
Manipulating left side
cosec2 θ+sec2 θ
= 1
sin 2θ + 1
cos 2 θ
= cos 2 θ+sin 2θ
sin 2 θcos 2 θ = 1
sin 2θcos 2 θθ
= cosec2 θsec2 θ which is true
Therefore cosec2 θ+sec2 θ= cosec2 θsec2 θ
d) sin2 θ
1cosθ =1+cosθ
Solution
Manipulating left side
sin2 θ
1cosθ
Using the following identity factor sin2x =1-cos2x
Document Page
MATHEMATICS 13
¿ 1cos2 θ
1cosθ
Simplify
= cos2θ-1
Rewrite 1 as 12
= cos2θ-12
Apply difference of two square formula
= (cosθ +1) (cosθ -1)
= - (cosθ + 1) (cosθ -1)
= ( cosθ+1)(cosθ1)θ
1cosθ
= cosθ + 1
= 1 + cosθ which is true
sin2 θ
1cosθ =1+cosθ
e) sinθ
1+ sinθ =tanθ(secθ-tanθ)
Solution
Manipulating left side
sinθ
1+ sinθ
= sinθ
cos2 θ+ ¿ sin2 θ +sinθ ¿

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATHEMATICS 14
sinθ
cos2 θ + sinθ
sin2 θ + sinθ
sinθ
Simplifying
sinθ
1+ sinθ = tanθ(secθ-tanθ)
f) cosec2θ(tan2θ-sin2θ)=tan2θ
Solution
Manipulating left side
cosec2θ(tan2θ-sin2θ)
1
sin 2θ *( tan2θ-sin2θ)
Like terms cancels
= tan2θ which is true
Therefore cosec2θ(tan2θ-sin2θ)= tan2θ
g) secθ
tanθ+cotθ = sinθ
Solution
Manipulating left side
secθ
tanθ+cotθ
Using the basic trigonometric identity sec x = 1
cosx
=
1
cosθ
tanθ+cotθ
Document Page
MATHEMATICS 15
Using the basic trigonometric identity tan x = sin x
cosx
=
1
cosθ
cosθ
sinθ + sinθ
cosθ
Simplify
=
1
cosθ ( cosθ
sinθ + sinθ
cosθ )
= sinθ
cosθ = sinθsinθ
cosθsinθ = sin2 θ
sinθcosθ
= cos2 θ
sinθcosθ + sin2 θ
sinθcosθ
Since the denominators are equal, combine the fractions
= cos2 θ+sin2 θ
sinθcosθ
=
1
cos2 θ+ sin2 θ
sinθcosθ cosθ
Multiply fractions;
= cos2 θ+sin2 θ cosθ
sinθcosθ
Cancel the common factor
= cos2 θ+sin2 θ
sinθ
Document Page
MATHEMATICS 16
=
1
cos2 θ+sin2 θ
sinθ
Apply the fraction rule
= sinθ
cos2 θ+sin2 θ
Using the following identity cos2 x +sin2 x = 1
= sinθ which is true
secθ
tanθ+cotθ
= sinθ
h) cosθ
sin θ+1 + sinθ +1
cosθ =2 secθ
Solution
Manipulating left side
cosθ
sin θ+1 + sinθ +1
cosθ
Simplify
= ( 1+ sinθ ) 2+ 1sinθ2
( 1+sinθ ) cosθ
Cancel common factor ( 1+sinθ )
= 2
cosθ
Use the following identity: 1
cosx = secx
= 2 secθ which is true

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATHEMATICS 17
Therefore cosθ
sin θ+1 + sinθ +1
cosθ = 2 secθ
QUESTION 6
Curve y = sec x for 0 x < 900
Axis interception points of sec x, 0 x < 900: Y intercepts (0, 1)
Asymptotes sec x, 0 x < 900: None
Extreme points of sec x, 0 x < 900: Minimum (0, 1)
Plotting: y = sec x for 0 x < π
2
Document Page
MATHEMATICS 18
QUESTION 7
Curve y = cosec x for 0 x < 1800
Axis interception points of cosec x, 0 x < 1800: Y intercepts (0, 1)
Asymptotes sec x, 0 x < 1800: None
Extreme points of sec x, 0 x < 1800: None
Plotting: y = sec x for 0 x < π assuming c = 1
Document Page
MATHEMATICS 19
QUESTION 8
a) 2cot2θ-3cotθ+1=0 for 0 θ 3600
Solution
Let cotθ = u
2u2θ-3u+1 = 0
Use quadratic equation
¿ (3) ± 32421
22

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATHEMATICS 20
Apply rule – (-a)=a
= 3± 32421
22
Simplify
u = 1, u = 1
2
Substitute back u = cotθ
cotθ = 1, cotθ = 1
2
General solution for cotθ = 1
θ = π
4 + πn
General solution for cotθ = 1
2
cotθ =a x = arccot 1
2 + πn
Combine all the solution
θ = π
4 + πn, θ = arccot 1
2 + πn
Show solution in decimal form
θ = π
4 + πn, θ=1.10714…+ πn
b) sec2θ-tan θ = 1 for -1800 θ 1800
Solution
Subtract 1 from both sides
Document Page
MATHEMATICS 21
sec2θ-tan θ -1 = 0
Using identity
- tan θ + tan2θ=0
Let tan θ =u
-u2 + u = 0
Solve using quadratic equation
u= 1± 12410
21
Simplify
u=1, u=0
Substitute back u = tan θ
tan θ =1, tan θ =0
tan θ =1, -1800 θ 1800
General solution for tan θ =1
θ = 450 + 1800
Solution for the range -1800 θ 1800
θ = 450, θ = -1350
θ =0, θ =1800,θ = -1800
Combine all the solutions
θ = 450, θ = -1350, θ =0, θ =1800,θ = -1800
Document Page
MATHEMATICS 22
c) cot2θ-3cosec θ+3 = 0 0 θ 1800
Solution
Simplify: cot2θ-3cosec θ+3 = 0
= sinθ 3 tan2 θ+3 tan2 θ sinθ
tan2 θsinθ
Express with sin, cos: sinθ 3 tan2 θ +3 tan2 θ sinθ
= sinθ - ( sinθ
cosθ )
2
*3 + ( sinθ
cosθ )
2
*3sinθ
Simplify
= 3 sin2 θ+ 3 sin3 θ+ cos2 θsinθ
cos3 θ = 0
Factor 3 sin2 θ+3 sin3 θ+cos2 θsinθ
= sin θ(-3 sinθ + 3 sin2 θ+cos2 θ ¿=0
Solving each part separately
= sinθ = 0 or -3 sinθ + 3 sin2 θ+cos2 θ=0
sinθ = 0, 0 θ 1800 : θ = 0, θ=1800
-3 sin θ + 3 sin2 θ+cos2 θ =0, 0 θ 1800: θ=900 , θ=300, θ=1500
Combine all solutions
θ = 0, θ=1800, θ=900 , θ=300, θ=1500
Since the equation is undefined for 0, 1800, 900
θ=300, θ=1500

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATHEMATICS 23
QUESTION 9
a) sin4x-cos4x = sin2x-cos2x
Solution
Manipulating left side
sin4x-cos4x
= (- cos x + sin x) (cos x + sin x) (sin2x+cos2x)
Use the identity sin2x+cos2x = 1
= (- cos x + sin x) (cos x + sin x)
Expand
= - cos2x + sin2x which is true
sin4x-cos4x = sin2x-cos2
b) sec4x-tan4x = 1+2 tan2x
Solution
Manipulating left side
sec4x-tan4x
Factor sec4x-tan4x
Document Page
MATHEMATICS 24
= (sec x + tan x) (sec x-tan x) (sec2 x-tan2 x)
Expand
= sec2 x-tan2 x
Using following identity: sec2 x-tan2 x = 1
= sec2 x +tan2 x
Using the following identity: sec2 x = 1+ tan2 x
= 1 + tan2 x + tan2 x
= 1 + 2tan2 x which is true
sec4 x - tan4 x = 1+2 tan2x
c) sinθ
1cosθ + sinθ
1+ cosθ = 2 cosecθ
Solution
Manipulating left side
sinθ
1cosθ + sinθ
1+ cosθ
Adjust fractions based on the LCM
= sinθ (cosθ1)
(1cosθ)(1+cosθ) + sinθ (cosθ+1)
(1+cosθ )(cosθ+ 1)
Since denominator are equal, we combine
= sinθ ( cosθ1 ) +sinθ (cosθ+1)
(1cosθ)(1+ cosθ)
Factor above equation
Document Page
MATHEMATICS 25
= 2 sinθ
(1cosθ)(1+cosθ)
= 2 sinθ
sin2 θ
Cancel common factor
= 2 cosecθ
Therefore sinθ
1cosθ + sinθ
1+ cosθ = 2 cosecθ
d) cot2 θ
1cot2 θ = cos2 θ
Solution
We take the left side
cot2 θ
1cot2 θ
= 1cot2 θ = (- cotθ +1) (cotθ-1)
= cot2 θ
(cotθ+1)(cotθ1)
Simplify
= cosθ* cosθ
= cos2 θ which is the same
Therefore cot2 θ
1cot2 θ = cos2 θ
e) 1tan2 θ
1+tan2 θ = 1- 2sin θ

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATHEMATICS 26
Solution
Manipulating left side
1tan2 θ
1+tan2 θ
Using identity: 1+ tan2 x = sec2x
= 1tan2 θ
sec2 x
= cotθ +1 ¿ ¿
= cotθ +1 ¿(cotθ 1) ¿
sec 2θ
Simplify
= 1- 2sinθ
Hence 1tan2 θ
1+tan2 θ =¿1- 2sin θ
f) 2tanθ
1+ tan2 θ = 2sinθcosθ
Solution
Manipulating left side
2tanθ
1+ tan2 θ
Express with sin, cos
Document Page
MATHEMATICS 27
=
2sinθ
cos θ
1+( sin θ
cos θ )2
Simplify
=
2sinθ
cos θ
sin2 θ
cos2 θ +1
Multiply 2sin θ
cos θ
= 2sin θ
cos θ
=
2 sin θ
cos θ
sin2 θ
cos2 θ +1
Apply the fraction rule:
=
sinθ2
cosθ (( sin2 θ
cos2 θ )+1)
Join
=
2 sinθ
sin2 θ+cos2 θ
cos2 θ + cosθ
Multiply cosθ
= (sin¿ ¿2 θ+ cos2 θ) cosθ
cos2 θ ¿
Cancel the common factorcosθ
Document Page
MATHEMATICS 28
= sin2 θ+ cos2 θ
cosθ
Apply the fraction rule:
= sinθ2 cosθ
sin2 θ+ cos2 θ
= 2 sinθcosθ
sin2 θ+ cos2 θ
Use identity sin2 θ+cos2 θ= 1
= 2 sinθcosθ which is true
2 tanθ
1+ tan2 θ = 2sinθcosθ
g) cot θ+tanθ
cosecθ+ secθ = 1
cos θ+sin θ
Solution
Manipulating the left side
cot θ+tanθ
cosecθ+ secθ
Simplify
= 2 cosecθ
cosecθ+ secθ
Simplify further
= 1
cos θ+sin θ which is true
Thus cot θ+tanθ
cosecθ+ secθ = 1
cos θ+sin θ

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATHEMATICS 29
h) sin3x+cos3x = (sin x + cos x) (1-sin x cos x)
Solution
Manipulating left side
sin3x+cos3x
Factor sin3x+cos3x
= (cos x +sin x) (cos2 x + sin2 x – cos x sin x)
Using the following identity cos2 x + sin2 = 1
= (1- cos x sin x) (cos x +sin x) which is true
sin3x+cos3x = (sin x + cos x) (1-sin x cos x)
QUESTION 10
Solve inequality cosecθ < 2 for value θ between 0 and 1800
Solution
Subtract 2 from both sides
cosecθ -2 < 2-2
Simplify
cosecθ -2 < 0
No solution for c
QUESTION 11
a) simplify (1-sinθ)(1+sinθ) secθ
Solution
Document Page
MATHEMATICS 30
Expand (1-sinθ) (1+sinθ)
Apply difference of two squares formula
= 12-sin2θ
Apply rule 1a = 1
12=1
= 1-sin2θ
= secθ (1-sin2θ)
Expand secθ (1-sin2θ)
Apply the distributive law:
= secθ. 1- secθ sin2θ
=1. Secθ - sin2θ se
Multiply: 1.secθ= secθ
= secθ - sin2θ se
b) solve inequality (1-sinθ) (1+sinθ) secθ > 1
2 for values of θ between -900 and 900
Solution
Express with sin, cos
(1-sinθ) (1+sinθ) 1
cosθ > 1
2
Simplify
= (1sinθ )(1+ sinθ )
cosθ > 1
2
Document Page
MATHEMATICS 31
Find the zeroes and undefined points of (1sinθ )(1+sinθ )
cosθ for 0 θ 3600
Identify the intervals
0 θ 900, 90 θ 2700, 2700 θ 3600
Identify the intervals that satisfy the required condition :> 0
𝜃¿ 0 or, 0 θ 900 or 2700
θ 3600 or
𝜃¿ 3600
Merge Overlapping intervals
0 θ 900 or 2700 θ 3600
Apply the periodicity of (1-sinθ) (1+sinθ) secθ
3600
n θ 900 + 3600n or 2700 + 3600
n < θ 3600 + 3600
n and -900 θ 900
2700-3600 < θ < 900
Number line
Graph

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATHEMATICS 32
QUESTION 12
a) sec2x = 3 for 0 0 x 3600
Solution
General solution for Sec2x = 3
sec x = a which is x = arcsec a + 3600n, x = 3600 - arcsec a + 3600n
solve 2x = arcsec 3 + 3600n
Divide both sides by 2 and simplify
Document Page
MATHEMATICS 33
x = arcsec 3+360 n
2
Solve 2x
x = arcsec 3+360 n
2 , x = 360arcsec 3+360 n
2
Solution for the range 0 θ 3600
x = arcsec 3
2 , x= 360arcsec 3
2 , x= arcsec 3+360
2 ,x = 720arcsec 3
2
Show solution in decimal form
x = 1.23095
2 , x= 3601.23095
2 , x= 1.23095+360
2 , x = 7201.23095
2
b) 3 cosec22x = 4 for 0 0 x 1800
Solution
3 cosec22x = 4
Dividing both sides by 6 cos (e) c2
= 3 cos( e) c2 2 x
6 cos(e)c2
= 4
6 cos( e) c2
Simplify
x = 2
3 cos( e) c2 ; c 0
Document Page
MATHEMATICS 34
QUESTION 13
Simultaneous equation
cosec 2x = 2
cot (x+y) = 3
Solution
cosec x can’t be greater than one for real solutions
no solution for cot (x+y) = 3
since x ε R
1 out of 34
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]