Engineering Mathematics | Assignment
VerifiedAdded on 2022/09/24
|34
|2379
|19
AI Summary
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
MATHEMATICS 1
ENGINEERING MATHEMATICS
by Student’s Name
Course Name
Professor’s Name
University Name
City, State
Date
ENGINEERING MATHEMATICS
by Student’s Name
Course Name
Professor’s Name
University Name
City, State
Date
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MATHEMATICS 2
QUESTION 3
a) (sin θ+cos θ ¿2 -2 sin θ cos θ = 1
Solution
Manipulating left side
(sin θ+cos θ ¿2 -2 sin θ cos θ
Apply perfect square formula: (a +b)2 = a2+2ab+b2
a = cos θ and b = sin θ
= cos2θ + 2cos θ sin θ + sin2θ
= cos2θ + 2cos θ sin θ + sin2θ -2cos θ sin θ
Add similar elements: 2cos θ sin θ -2cos θ sin θ =0
= cos2θ + sin2θ
Use the following identity cos2x + sin2x = 1
Hence cos2θ + sin2θ = 1
∴ (sin θ+cos θ ¿2 -2 sin θ cos θ = 1 is True
b) tanθ cosecθ = secθ
Solution
Manipulating the left side
tanθ cosecθ
Using the basic trigonometric identity cosec x = 1
sin x
QUESTION 3
a) (sin θ+cos θ ¿2 -2 sin θ cos θ = 1
Solution
Manipulating left side
(sin θ+cos θ ¿2 -2 sin θ cos θ
Apply perfect square formula: (a +b)2 = a2+2ab+b2
a = cos θ and b = sin θ
= cos2θ + 2cos θ sin θ + sin2θ
= cos2θ + 2cos θ sin θ + sin2θ -2cos θ sin θ
Add similar elements: 2cos θ sin θ -2cos θ sin θ =0
= cos2θ + sin2θ
Use the following identity cos2x + sin2x = 1
Hence cos2θ + sin2θ = 1
∴ (sin θ+cos θ ¿2 -2 sin θ cos θ = 1 is True
b) tanθ cosecθ = secθ
Solution
Manipulating the left side
tanθ cosecθ
Using the basic trigonometric identity cosec x = 1
sin x
MATHEMATICS 3
= tanθ * 1
sinθ
Use the following identity: tan x = sinx
cos x
= sinθ
cos θ * 1
sinθ
Cancel the like terms
= 1
cos θ from identity: 1
cos θ = secθ
= secθ which is true
Therefore tanθ cosecθ = secθ
c) cosecθ(1-cosθ)(1+cosθ) = sinθ
Solution
Manipulating left side
cosecθ(1-cosθ)(1+cosθ)
Use the following identity: cosec x = 1
sin x
= 1
sin θ (1-cosθ)(1+cosθ)
Use the following identity: (1-cosθ)(1+cosθ) = 1-cos2θ
= 1
sin θ (1-cos2θ)
Simplify (1-cos2θ) = sin2θ
= 1
sin θ sin2θ
= tanθ * 1
sinθ
Use the following identity: tan x = sinx
cos x
= sinθ
cos θ * 1
sinθ
Cancel the like terms
= 1
cos θ from identity: 1
cos θ = secθ
= secθ which is true
Therefore tanθ cosecθ = secθ
c) cosecθ(1-cosθ)(1+cosθ) = sinθ
Solution
Manipulating left side
cosecθ(1-cosθ)(1+cosθ)
Use the following identity: cosec x = 1
sin x
= 1
sin θ (1-cosθ)(1+cosθ)
Use the following identity: (1-cosθ)(1+cosθ) = 1-cos2θ
= 1
sin θ (1-cos2θ)
Simplify (1-cos2θ) = sin2θ
= 1
sin θ sin2θ
MATHEMATICS 4
= sinθ which is true
Therefore cosecθ(1-cosθ)(1+cosθ) = sinθ
d) cotθ secθ tan θ√ (1−sin2 θ) = 1
Solution
Manipulating left side
cotθ secθ tan θ√(1−sin2 θ)
Simplify
√ (1−sin2 θ) = cosθ
= 1
tanθ * 1
cosθ * tanθ * cosθ
Cancel the like terms
= 1 which is true
Therefore cotθ secθ tan θ √(1−sin2 θ) = 1
e) 1
sec2 θ + 1
cosec2 θ =1
Solution
Manipulating left side
1
sec2 θ + 1
cosec2 θ
Express with sin, cos
Using the basic trigonometric identity cosec x = 1
sin x
= sinθ which is true
Therefore cosecθ(1-cosθ)(1+cosθ) = sinθ
d) cotθ secθ tan θ√ (1−sin2 θ) = 1
Solution
Manipulating left side
cotθ secθ tan θ√(1−sin2 θ)
Simplify
√ (1−sin2 θ) = cosθ
= 1
tanθ * 1
cosθ * tanθ * cosθ
Cancel the like terms
= 1 which is true
Therefore cotθ secθ tan θ √(1−sin2 θ) = 1
e) 1
sec2 θ + 1
cosec2 θ =1
Solution
Manipulating left side
1
sec2 θ + 1
cosec2 θ
Express with sin, cos
Using the basic trigonometric identity cosec x = 1
sin x
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MATHEMATICS 5
=
1
( 1
sinθ ) 2 +
1
( 1
cosθ )2
Simplify by apply exponent rule and fraction rule
=
1
( 1
cosθ )2 = cos2
θ and
1
( 1
sinθ ) 2 = sin2
θ
= cos2θ + sin2
θ
Use the following identity: cos2θ + sin2
θ = 1
= 1 two sides could take the same form
Hence 1
sec2 θ + 1
cosec2 θ =1
f) secθ – cosθ = sinθtanθ
Solution
Manipulating left side
secθ – cosθ
Express with sin, cos
Using the basic trigonometric identity sec x = 1
cos x
= - cos θ + 1
cos θ
Simplify and applying exponent rule
= −cos θcosθ
cos θ + 1
cos θ
Since denominators are equal, combine the fraction:
=
1
( 1
sinθ ) 2 +
1
( 1
cosθ )2
Simplify by apply exponent rule and fraction rule
=
1
( 1
cosθ )2 = cos2
θ and
1
( 1
sinθ ) 2 = sin2
θ
= cos2θ + sin2
θ
Use the following identity: cos2θ + sin2
θ = 1
= 1 two sides could take the same form
Hence 1
sec2 θ + 1
cosec2 θ =1
f) secθ – cosθ = sinθtanθ
Solution
Manipulating left side
secθ – cosθ
Express with sin, cos
Using the basic trigonometric identity sec x = 1
cos x
= - cos θ + 1
cos θ
Simplify and applying exponent rule
= −cos θcosθ
cos θ + 1
cos θ
Since denominators are equal, combine the fraction:
MATHEMATICS 6
= −cos2 θ+1
cos θ
= 1−cos2 θ
cos θ
Use the following identity: 1−cos2 x = sin2 x
= sin2 θ
cos θ
Use the following identity: sinx
cos x = tan x
= sin θtanθ which is true
Hence secθ – cosθ = sin θtanθ
g) sin2θ + 2cos2θ = 2- sin2θ
Solution
Manipulating left side
sin2θ + 2cos2θ
Use the following identity: cos2 x = 1- sin2 x
= sin2θ + 2(1- sin2 θ)
Expand: 2(1- sin2 θ)
= 2- 2 sin2 θ
= sin2θ + 2- 2 sin2 θ
Simplify and group like terms
= sin2θ - 2sin2 θ+2
= −cos2 θ+1
cos θ
= 1−cos2 θ
cos θ
Use the following identity: 1−cos2 x = sin2 x
= sin2 θ
cos θ
Use the following identity: sinx
cos x = tan x
= sin θtanθ which is true
Hence secθ – cosθ = sin θtanθ
g) sin2θ + 2cos2θ = 2- sin2θ
Solution
Manipulating left side
sin2θ + 2cos2θ
Use the following identity: cos2 x = 1- sin2 x
= sin2θ + 2(1- sin2 θ)
Expand: 2(1- sin2 θ)
= 2- 2 sin2 θ
= sin2θ + 2- 2 sin2 θ
Simplify and group like terms
= sin2θ - 2sin2 θ+2
MATHEMATICS 7
Add similar elements:sin2θ - 2sin2 θ = - sin2θ
= - sin2θ + 2
= 2- sin2θ which is true
Therefore sin2θ + 2cos2θ = 2- sin2θ
h) tanθ + cotθ = 1
sin θcosθ
Solution
Manipulating the left side
tanθ + cotθ
Express with sin, cos:
= cosθ
sin θ + tanθ
Using the basic trigonometric identity tan x = sin x
cos x
= cosθ
sin θ + sin θ
cos θ
Simplify above
cosθ
sin θ = cos2 θ
sin θcosθ and sin θ
cos θ = sin2 θ
sin θcosθ
= cos2 θ
sin θcosθ + sin2 θ
sin θcosθ
Since the denominator are equal, combine the fraction
= cos2 θ+sin2 θ
sin θcosθ
Add similar elements:sin2θ - 2sin2 θ = - sin2θ
= - sin2θ + 2
= 2- sin2θ which is true
Therefore sin2θ + 2cos2θ = 2- sin2θ
h) tanθ + cotθ = 1
sin θcosθ
Solution
Manipulating the left side
tanθ + cotθ
Express with sin, cos:
= cosθ
sin θ + tanθ
Using the basic trigonometric identity tan x = sin x
cos x
= cosθ
sin θ + sin θ
cos θ
Simplify above
cosθ
sin θ = cos2 θ
sin θcosθ and sin θ
cos θ = sin2 θ
sin θcosθ
= cos2 θ
sin θcosθ + sin2 θ
sin θcosθ
Since the denominator are equal, combine the fraction
= cos2 θ+sin2 θ
sin θcosθ
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MATHEMATICS 8
Use the following identity: cos2 x +sin2 x = 1
= 1
sin θcosθ which is true
Therefore tanθ + cotθ = 1
sin θcosθ
QUESTION 4
a) sec x = 2
Solution
sec x = 2, 0 ≤ x ≤ 3600
General solution for sec x = 2
x=600 +3600 n, x=3000 +3600 n
Solutions for range 0 ≤ x ≤ 3600
x=600, x=3000
b) cot x = √3
Solution
cot x = √3, 0 ≤ x ≤ 3600
General solution for sec x = √3
x=300 +1800 n,
Solutions for range 0 ≤ x ≤ 3600
Use the following identity: cos2 x +sin2 x = 1
= 1
sin θcosθ which is true
Therefore tanθ + cotθ = 1
sin θcosθ
QUESTION 4
a) sec x = 2
Solution
sec x = 2, 0 ≤ x ≤ 3600
General solution for sec x = 2
x=600 +3600 n, x=3000 +3600 n
Solutions for range 0 ≤ x ≤ 3600
x=600, x=3000
b) cot x = √3
Solution
cot x = √3, 0 ≤ x ≤ 3600
General solution for sec x = √3
x=300 +1800 n,
Solutions for range 0 ≤ x ≤ 3600
MATHEMATICS 9
x=300, x=2100
c) cosec x = √ 2
Solution
cosec x = √ 2, 0 ≤ x ≤ 2π
cosec x can’t be greater than one for real solutions
No solution for x ∈ R
d) sec x = 1.2
Solution
sec x = 1.2, 0 ≤ x ≤ 3600
General solution for sec x =1.2
sec x=a → x = arcsec a + 3600 n, x= 3600 –arcsec a + 3600 n
x = arcsec 1.2 + 3600 n, x= 3600 –arcsec 1.2 + 3600 n
Solutions for range 0 ≤ x ≤ 3600
x=0.58568, x=5.69749
e) cot x =3
Solution
cot x = 3, 0 ≤ x ≤ 3600
General solution for cot x =3
cot x=a → x = arccot a + 1800 n
x = arccot 3 + 1800 n
x=300, x=2100
c) cosec x = √ 2
Solution
cosec x = √ 2, 0 ≤ x ≤ 2π
cosec x can’t be greater than one for real solutions
No solution for x ∈ R
d) sec x = 1.2
Solution
sec x = 1.2, 0 ≤ x ≤ 3600
General solution for sec x =1.2
sec x=a → x = arcsec a + 3600 n, x= 3600 –arcsec a + 3600 n
x = arcsec 1.2 + 3600 n, x= 3600 –arcsec 1.2 + 3600 n
Solutions for range 0 ≤ x ≤ 3600
x=0.58568, x=5.69749
e) cot x =3
Solution
cot x = 3, 0 ≤ x ≤ 3600
General solution for cot x =3
cot x=a → x = arccot a + 1800 n
x = arccot 3 + 1800 n
MATHEMATICS 10
Solutions for range 0 ≤ x ≤ 3600
x= arccot 3, x= arccot 3 + 1800 n
Solution in decimal form
x=0.3215, x=0.32175…..+180
f) cosec x =1
Solution
cosec x =1, 0 ≤ x ≤ 2π
General solution for cosec x =1
Solve ec x = 0 + 2πn
x= 2 πn
ec
Solutions for range 0 ≤ x ≤ 2π
No solution for x ∈ R
QUESTION 5
a) cosecθ- sinθ = cotθ cosθ
Solution
Manipulating left side
cosecθ - sinθ
Using the basic Trigonometric identity cosec x = 1
sin x
= 1
sin θ – sinθ
Solutions for range 0 ≤ x ≤ 3600
x= arccot 3, x= arccot 3 + 1800 n
Solution in decimal form
x=0.3215, x=0.32175…..+180
f) cosec x =1
Solution
cosec x =1, 0 ≤ x ≤ 2π
General solution for cosec x =1
Solve ec x = 0 + 2πn
x= 2 πn
ec
Solutions for range 0 ≤ x ≤ 2π
No solution for x ∈ R
QUESTION 5
a) cosecθ- sinθ = cotθ cosθ
Solution
Manipulating left side
cosecθ - sinθ
Using the basic Trigonometric identity cosec x = 1
sin x
= 1
sin θ – sinθ
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MATHEMATICS 11
Simplify above
Since sinθ = sinθsinθ
sin θ
= 1
sin θ – sinθsinθ
sin θ since denominators are equal we combine
= 1−sinθsinθ
sin θ
= 1−sin2 θ
sin θ apply following identity 1-sin2x = cos2x
= cos2 θ
sin θ use the following identity cosx
sinx =cot x
= cosθ cotθ which is true
∴ cosecθ- sinθ = cotθ cosθ is true
b) cos2θ-sin2θ=2 cos2θ-1
Solution
Manipulating left side
cos2θ-sin2θ
Using the following identity factor sin2x =1-cos2x
= - (1- cos2θ) + cos2θ
Distribute parentheses
= -1-(- cos2θ)
Apply minus-plus rule
-(-a)=a, -(a)=-a
Simplify above
Since sinθ = sinθsinθ
sin θ
= 1
sin θ – sinθsinθ
sin θ since denominators are equal we combine
= 1−sinθsinθ
sin θ
= 1−sin2 θ
sin θ apply following identity 1-sin2x = cos2x
= cos2 θ
sin θ use the following identity cosx
sinx =cot x
= cosθ cotθ which is true
∴ cosecθ- sinθ = cotθ cosθ is true
b) cos2θ-sin2θ=2 cos2θ-1
Solution
Manipulating left side
cos2θ-sin2θ
Using the following identity factor sin2x =1-cos2x
= - (1- cos2θ) + cos2θ
Distribute parentheses
= -1-(- cos2θ)
Apply minus-plus rule
-(-a)=a, -(a)=-a
MATHEMATICS 12
= -1+ cos2θ
= -1+ cos2θ + cos2θ
Add similar elements
= -1+2 cos2θ which is true
∴ cos2θ-sin2θ=2 cos2θ-1
c) cosec2 θ+sec2 θ= cosec2 θsec2 θ
Solution
Manipulating left side
cosec2 θ+sec2 θ
= 1
sin 2θ + 1
cos 2 θ
= cos 2 θ+sin 2θ
sin 2 θcos 2 θ = 1
sin 2θcos 2 θθ
= cosec2 θsec2 θ which is true
Therefore cosec2 θ+sec2 θ= cosec2 θsec2 θ
d) sin2 θ
1−cosθ =1+cosθ
Solution
Manipulating left side
sin2 θ
1−cosθ
Using the following identity factor sin2x =1-cos2x
= -1+ cos2θ
= -1+ cos2θ + cos2θ
Add similar elements
= -1+2 cos2θ which is true
∴ cos2θ-sin2θ=2 cos2θ-1
c) cosec2 θ+sec2 θ= cosec2 θsec2 θ
Solution
Manipulating left side
cosec2 θ+sec2 θ
= 1
sin 2θ + 1
cos 2 θ
= cos 2 θ+sin 2θ
sin 2 θcos 2 θ = 1
sin 2θcos 2 θθ
= cosec2 θsec2 θ which is true
Therefore cosec2 θ+sec2 θ= cosec2 θsec2 θ
d) sin2 θ
1−cosθ =1+cosθ
Solution
Manipulating left side
sin2 θ
1−cosθ
Using the following identity factor sin2x =1-cos2x
MATHEMATICS 13
¿ 1−cos2 θ
1−cosθ
Simplify
= cos2θ-1
Rewrite 1 as 12
= cos2θ-12
Apply difference of two square formula
= (cosθ +1) (cosθ -1)
= - (cosθ + 1) (cosθ -1)
= −( cosθ+1)(cosθ−1)θ
1−cosθ
= cosθ + 1
= 1 + cosθ which is true
∴ sin2 θ
1−cosθ =1+cosθ
e) sinθ
1+ sinθ =tanθ(secθ-tanθ)
Solution
Manipulating left side
sinθ
1+ sinθ
= sinθ
cos2 θ+ ¿ sin2 θ +sinθ ¿
¿ 1−cos2 θ
1−cosθ
Simplify
= cos2θ-1
Rewrite 1 as 12
= cos2θ-12
Apply difference of two square formula
= (cosθ +1) (cosθ -1)
= - (cosθ + 1) (cosθ -1)
= −( cosθ+1)(cosθ−1)θ
1−cosθ
= cosθ + 1
= 1 + cosθ which is true
∴ sin2 θ
1−cosθ =1+cosθ
e) sinθ
1+ sinθ =tanθ(secθ-tanθ)
Solution
Manipulating left side
sinθ
1+ sinθ
= sinθ
cos2 θ+ ¿ sin2 θ +sinθ ¿
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MATHEMATICS 14
sinθ
cos2 θ + sinθ
sin2 θ + sinθ
sinθ
Simplifying
sinθ
1+ sinθ = tanθ(secθ-tanθ)
f) cosec2θ(tan2θ-sin2θ)=tan2θ
Solution
Manipulating left side
cosec2θ(tan2θ-sin2θ)
1
sin 2θ *( tan2θ-sin2θ)
Like terms cancels
= tan2θ which is true
Therefore cosec2θ(tan2θ-sin2θ)= tan2θ
g) secθ
tanθ+cotθ = sinθ
Solution
Manipulating left side
secθ
tanθ+cotθ
Using the basic trigonometric identity sec x = 1
cosx
=
1
cosθ
tanθ+cotθ
sinθ
cos2 θ + sinθ
sin2 θ + sinθ
sinθ
Simplifying
sinθ
1+ sinθ = tanθ(secθ-tanθ)
f) cosec2θ(tan2θ-sin2θ)=tan2θ
Solution
Manipulating left side
cosec2θ(tan2θ-sin2θ)
1
sin 2θ *( tan2θ-sin2θ)
Like terms cancels
= tan2θ which is true
Therefore cosec2θ(tan2θ-sin2θ)= tan2θ
g) secθ
tanθ+cotθ = sinθ
Solution
Manipulating left side
secθ
tanθ+cotθ
Using the basic trigonometric identity sec x = 1
cosx
=
1
cosθ
tanθ+cotθ
MATHEMATICS 15
Using the basic trigonometric identity tan x = sin x
cosx
=
1
cosθ
cosθ
sinθ + sinθ
cosθ
Simplify
=
1
cosθ ( cosθ
sinθ + sinθ
cosθ )
= sinθ
cosθ = sinθsinθ
cosθsinθ = sin2 θ
sinθcosθ
= cos2 θ
sinθcosθ + sin2 θ
sinθcosθ
Since the denominators are equal, combine the fractions
= cos2 θ+sin2 θ
sinθcosθ
=
1
cos2 θ+ sin2 θ
sinθcosθ cosθ
Multiply fractions;
= cos2 θ+sin2 θ cosθ
sinθcosθ
Cancel the common factor
= cos2 θ+sin2 θ
sinθ
Using the basic trigonometric identity tan x = sin x
cosx
=
1
cosθ
cosθ
sinθ + sinθ
cosθ
Simplify
=
1
cosθ ( cosθ
sinθ + sinθ
cosθ )
= sinθ
cosθ = sinθsinθ
cosθsinθ = sin2 θ
sinθcosθ
= cos2 θ
sinθcosθ + sin2 θ
sinθcosθ
Since the denominators are equal, combine the fractions
= cos2 θ+sin2 θ
sinθcosθ
=
1
cos2 θ+ sin2 θ
sinθcosθ cosθ
Multiply fractions;
= cos2 θ+sin2 θ cosθ
sinθcosθ
Cancel the common factor
= cos2 θ+sin2 θ
sinθ
MATHEMATICS 16
=
1
cos2 θ+sin2 θ
sinθ
Apply the fraction rule
= sinθ
cos2 θ+sin2 θ
Using the following identity cos2 x +sin2 x = 1
= sinθ which is true
∴ secθ
tanθ+cotθ
= sinθ
h) cosθ
sin θ+1 + sinθ +1
cosθ =2 secθ
Solution
Manipulating left side
cosθ
sin θ+1 + sinθ +1
cosθ
Simplify
= ( 1+ sinθ ) 2+ 1−sinθ2
( 1+sinθ ) cosθ
Cancel common factor ( 1+sinθ )
= 2
cosθ
Use the following identity: 1
cosx = secx
= 2 secθ which is true
=
1
cos2 θ+sin2 θ
sinθ
Apply the fraction rule
= sinθ
cos2 θ+sin2 θ
Using the following identity cos2 x +sin2 x = 1
= sinθ which is true
∴ secθ
tanθ+cotθ
= sinθ
h) cosθ
sin θ+1 + sinθ +1
cosθ =2 secθ
Solution
Manipulating left side
cosθ
sin θ+1 + sinθ +1
cosθ
Simplify
= ( 1+ sinθ ) 2+ 1−sinθ2
( 1+sinθ ) cosθ
Cancel common factor ( 1+sinθ )
= 2
cosθ
Use the following identity: 1
cosx = secx
= 2 secθ which is true
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MATHEMATICS 17
Therefore cosθ
sin θ+1 + sinθ +1
cosθ = 2 secθ
QUESTION 6
Curve y = sec x for 0≤ x < 900
Axis interception points of sec x, 0≤ x < 900: Y intercepts (0, 1)
Asymptotes sec x, 0≤ x < 900: None
Extreme points of sec x, 0≤ x < 900: Minimum (0, 1)
Plotting: y = sec x for 0≤ x < π
2
Therefore cosθ
sin θ+1 + sinθ +1
cosθ = 2 secθ
QUESTION 6
Curve y = sec x for 0≤ x < 900
Axis interception points of sec x, 0≤ x < 900: Y intercepts (0, 1)
Asymptotes sec x, 0≤ x < 900: None
Extreme points of sec x, 0≤ x < 900: Minimum (0, 1)
Plotting: y = sec x for 0≤ x < π
2
MATHEMATICS 18
QUESTION 7
Curve y = cosec x for 0≤ x < 1800
Axis interception points of cosec x, 0≤ x < 1800: Y intercepts (0, 1)
Asymptotes sec x, 0≤ x < 1800: None
Extreme points of sec x, 0≤ x < 1800: None
Plotting: y = sec x for 0≤ x < π assuming c = 1
QUESTION 7
Curve y = cosec x for 0≤ x < 1800
Axis interception points of cosec x, 0≤ x < 1800: Y intercepts (0, 1)
Asymptotes sec x, 0≤ x < 1800: None
Extreme points of sec x, 0≤ x < 1800: None
Plotting: y = sec x for 0≤ x < π assuming c = 1
MATHEMATICS 19
QUESTION 8
a) 2cot2θ-3cotθ+1=0 for 0 ≤ θ ≤3600
Solution
Let cotθ = u
2u2θ-3u+1 = 0
Use quadratic equation
¿ −(−3) ± √−32−4∗2∗1
2∗2
QUESTION 8
a) 2cot2θ-3cotθ+1=0 for 0 ≤ θ ≤3600
Solution
Let cotθ = u
2u2θ-3u+1 = 0
Use quadratic equation
¿ −(−3) ± √−32−4∗2∗1
2∗2
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MATHEMATICS 20
Apply rule – (-a)=a
= 3± √−32−4∗2∗1
2∗2
Simplify
u = 1, u = 1
2
Substitute back u = cotθ
cotθ = 1, cotθ = 1
2
General solution for cotθ = 1
θ = π
4 + πn
General solution for cotθ = 1
2
cotθ =a x = arccot 1
2 + πn
Combine all the solution
θ = π
4 + πn, θ = arccot 1
2 + πn
Show solution in decimal form
θ = π
4 + πn, θ=1.10714…+ πn
b) sec2θ-tan θ = 1 for -1800≤ θ ≤1800
Solution
Subtract 1 from both sides
Apply rule – (-a)=a
= 3± √−32−4∗2∗1
2∗2
Simplify
u = 1, u = 1
2
Substitute back u = cotθ
cotθ = 1, cotθ = 1
2
General solution for cotθ = 1
θ = π
4 + πn
General solution for cotθ = 1
2
cotθ =a x = arccot 1
2 + πn
Combine all the solution
θ = π
4 + πn, θ = arccot 1
2 + πn
Show solution in decimal form
θ = π
4 + πn, θ=1.10714…+ πn
b) sec2θ-tan θ = 1 for -1800≤ θ ≤1800
Solution
Subtract 1 from both sides
MATHEMATICS 21
sec2θ-tan θ -1 = 0
Using identity
- tan θ + tan2θ=0
Let tan θ =u
-u2 + u = 0
Solve using quadratic equation
u= 1± √−12−4∗1∗0
2∗1
Simplify
u=1, u=0
Substitute back u = tan θ
tan θ =1, tan θ =0
tan θ =1, -1800≤ θ ≤1800
General solution for tan θ =1
θ = 450 + 1800
Solution for the range -1800≤ θ ≤1800
θ = 450, θ = -1350
θ =0, θ =1800,θ = -1800
Combine all the solutions
θ = 450, θ = -1350, θ =0, θ =1800,θ = -1800
sec2θ-tan θ -1 = 0
Using identity
- tan θ + tan2θ=0
Let tan θ =u
-u2 + u = 0
Solve using quadratic equation
u= 1± √−12−4∗1∗0
2∗1
Simplify
u=1, u=0
Substitute back u = tan θ
tan θ =1, tan θ =0
tan θ =1, -1800≤ θ ≤1800
General solution for tan θ =1
θ = 450 + 1800
Solution for the range -1800≤ θ ≤1800
θ = 450, θ = -1350
θ =0, θ =1800,θ = -1800
Combine all the solutions
θ = 450, θ = -1350, θ =0, θ =1800,θ = -1800
MATHEMATICS 22
c) cot2θ-3cosec θ+3 = 0 0 ≤ θ ≤1800
Solution
Simplify: cot2θ-3cosec θ+3 = 0
= sinθ – 3 tan2 θ+3 tan2 θ sinθ
tan2 θsinθ
Express with sin, cos: sinθ – 3 tan2 θ +3 tan2 θ sinθ
= sinθ - ( sinθ
cosθ )
2
*3 + ( sinθ
cosθ )
2
*3sinθ
Simplify
= −3 sin2 θ+ 3 sin3 θ+ cos2 θsinθ
cos3 θ = 0
Factor −3 sin2 θ+3 sin3 θ+cos2 θsinθ
= sin θ(-3 sinθ + 3 sin2 θ+cos2 θ ¿=0
Solving each part separately
= sinθ = 0 or -3 sinθ + 3 sin2 θ+cos2 θ=0
sinθ = 0, 0 ≤ θ ≤1800 : θ = 0, θ=1800
-3 sin θ + 3 sin2 θ+cos2 θ =0, 0 ≤ θ ≤1800: θ=900 , θ=300, θ=1500
Combine all solutions
θ = 0, θ=1800, θ=900 , θ=300, θ=1500
Since the equation is undefined for 0, 1800, 900
θ=300, θ=1500
c) cot2θ-3cosec θ+3 = 0 0 ≤ θ ≤1800
Solution
Simplify: cot2θ-3cosec θ+3 = 0
= sinθ – 3 tan2 θ+3 tan2 θ sinθ
tan2 θsinθ
Express with sin, cos: sinθ – 3 tan2 θ +3 tan2 θ sinθ
= sinθ - ( sinθ
cosθ )
2
*3 + ( sinθ
cosθ )
2
*3sinθ
Simplify
= −3 sin2 θ+ 3 sin3 θ+ cos2 θsinθ
cos3 θ = 0
Factor −3 sin2 θ+3 sin3 θ+cos2 θsinθ
= sin θ(-3 sinθ + 3 sin2 θ+cos2 θ ¿=0
Solving each part separately
= sinθ = 0 or -3 sinθ + 3 sin2 θ+cos2 θ=0
sinθ = 0, 0 ≤ θ ≤1800 : θ = 0, θ=1800
-3 sin θ + 3 sin2 θ+cos2 θ =0, 0 ≤ θ ≤1800: θ=900 , θ=300, θ=1500
Combine all solutions
θ = 0, θ=1800, θ=900 , θ=300, θ=1500
Since the equation is undefined for 0, 1800, 900
θ=300, θ=1500
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MATHEMATICS 23
QUESTION 9
a) sin4x-cos4x = sin2x-cos2x
Solution
Manipulating left side
sin4x-cos4x
= (- cos x + sin x) (cos x + sin x) (sin2x+cos2x)
Use the identity sin2x+cos2x = 1
= (- cos x + sin x) (cos x + sin x)
Expand
= - cos2x + sin2x which is true
∴sin4x-cos4x = sin2x-cos2
b) sec4x-tan4x = 1+2 tan2x
Solution
Manipulating left side
sec4x-tan4x
Factor sec4x-tan4x
QUESTION 9
a) sin4x-cos4x = sin2x-cos2x
Solution
Manipulating left side
sin4x-cos4x
= (- cos x + sin x) (cos x + sin x) (sin2x+cos2x)
Use the identity sin2x+cos2x = 1
= (- cos x + sin x) (cos x + sin x)
Expand
= - cos2x + sin2x which is true
∴sin4x-cos4x = sin2x-cos2
b) sec4x-tan4x = 1+2 tan2x
Solution
Manipulating left side
sec4x-tan4x
Factor sec4x-tan4x
MATHEMATICS 24
= (sec x + tan x) (sec x-tan x) (sec2 x-tan2 x)
Expand
= sec2 x-tan2 x
Using following identity: sec2 x-tan2 x = 1
= sec2 x +tan2 x
Using the following identity: sec2 x = 1+ tan2 x
= 1 + tan2 x + tan2 x
= 1 + 2tan2 x which is true
∴sec4 x - tan4 x = 1+2 tan2x
c) sinθ
1−cosθ + sinθ
1+ cosθ = 2 cosecθ
Solution
Manipulating left side
sinθ
1−cosθ + sinθ
1+ cosθ
Adjust fractions based on the LCM
= sinθ (cosθ−1)
(1−cosθ)(1+cosθ) + sinθ (−cosθ+1)
(1+cosθ )(−cosθ+ 1)
Since denominator are equal, we combine
= sinθ ( cosθ−1 ) +sinθ (−cosθ+1)
(1−cosθ)(1+ cosθ)
Factor above equation
= (sec x + tan x) (sec x-tan x) (sec2 x-tan2 x)
Expand
= sec2 x-tan2 x
Using following identity: sec2 x-tan2 x = 1
= sec2 x +tan2 x
Using the following identity: sec2 x = 1+ tan2 x
= 1 + tan2 x + tan2 x
= 1 + 2tan2 x which is true
∴sec4 x - tan4 x = 1+2 tan2x
c) sinθ
1−cosθ + sinθ
1+ cosθ = 2 cosecθ
Solution
Manipulating left side
sinθ
1−cosθ + sinθ
1+ cosθ
Adjust fractions based on the LCM
= sinθ (cosθ−1)
(1−cosθ)(1+cosθ) + sinθ (−cosθ+1)
(1+cosθ )(−cosθ+ 1)
Since denominator are equal, we combine
= sinθ ( cosθ−1 ) +sinθ (−cosθ+1)
(1−cosθ)(1+ cosθ)
Factor above equation
MATHEMATICS 25
= 2 sinθ
(1−cosθ)(1+cosθ)
= 2 sinθ
sin2 θ
Cancel common factor
= 2 cosecθ
Therefore sinθ
1−cosθ + sinθ
1+ cosθ = 2 cosecθ
d) cot2 θ
1−cot2 θ = cos2 θ
Solution
We take the left side
cot2 θ
1−cot2 θ
= 1−cot2 θ = (- cotθ +1) (cotθ-1)
= cot2 θ
(−cotθ+1)(cotθ−1)
Simplify
= cosθ* cosθ
= cos2 θ which is the same
Therefore cot2 θ
1−cot2 θ = cos2 θ
e) 1−tan2 θ
1+tan2 θ = 1- 2sin θ
= 2 sinθ
(1−cosθ)(1+cosθ)
= 2 sinθ
sin2 θ
Cancel common factor
= 2 cosecθ
Therefore sinθ
1−cosθ + sinθ
1+ cosθ = 2 cosecθ
d) cot2 θ
1−cot2 θ = cos2 θ
Solution
We take the left side
cot2 θ
1−cot2 θ
= 1−cot2 θ = (- cotθ +1) (cotθ-1)
= cot2 θ
(−cotθ+1)(cotθ−1)
Simplify
= cosθ* cosθ
= cos2 θ which is the same
Therefore cot2 θ
1−cot2 θ = cos2 θ
e) 1−tan2 θ
1+tan2 θ = 1- 2sin θ
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MATHEMATICS 26
Solution
Manipulating left side
1−tan2 θ
1+tan2 θ
Using identity: 1+ tan2 x = sec2x
= 1−tan2 θ
sec2 x
= −cotθ +1 ¿ ¿
= −cotθ +1 ¿(cotθ −1) ¿
sec 2θ
Simplify
= 1- 2sinθ
Hence 1−tan2 θ
1+tan2 θ =¿1- 2sin θ
f) 2tanθ
1+ tan2 θ = 2sinθcosθ
Solution
Manipulating left side
2tanθ
1+ tan2 θ
Express with sin, cos
Solution
Manipulating left side
1−tan2 θ
1+tan2 θ
Using identity: 1+ tan2 x = sec2x
= 1−tan2 θ
sec2 x
= −cotθ +1 ¿ ¿
= −cotθ +1 ¿(cotθ −1) ¿
sec 2θ
Simplify
= 1- 2sinθ
Hence 1−tan2 θ
1+tan2 θ =¿1- 2sin θ
f) 2tanθ
1+ tan2 θ = 2sinθcosθ
Solution
Manipulating left side
2tanθ
1+ tan2 θ
Express with sin, cos
MATHEMATICS 27
=
2∗sinθ
cos θ
1+( sin θ
cos θ )2
Simplify
=
2∗sinθ
cos θ
sin2 θ
cos2 θ +1
Multiply 2∗sin θ
cos θ
= 2sin θ
cos θ
=
2 sin θ
cos θ
sin2 θ
cos2 θ +1
Apply the fraction rule:
=
sinθ∗2
cosθ (( sin2 θ
cos2 θ )+1)
Join
=
2 sinθ
sin2 θ+cos2 θ
cos2 θ + cosθ
Multiply cosθ
= (sin¿ ¿2 θ+ cos2 θ) cosθ
cos2 θ ¿
Cancel the common factorcosθ
=
2∗sinθ
cos θ
1+( sin θ
cos θ )2
Simplify
=
2∗sinθ
cos θ
sin2 θ
cos2 θ +1
Multiply 2∗sin θ
cos θ
= 2sin θ
cos θ
=
2 sin θ
cos θ
sin2 θ
cos2 θ +1
Apply the fraction rule:
=
sinθ∗2
cosθ (( sin2 θ
cos2 θ )+1)
Join
=
2 sinθ
sin2 θ+cos2 θ
cos2 θ + cosθ
Multiply cosθ
= (sin¿ ¿2 θ+ cos2 θ) cosθ
cos2 θ ¿
Cancel the common factorcosθ
MATHEMATICS 28
= sin2 θ+ cos2 θ
cosθ
Apply the fraction rule:
= sinθ∗2 cosθ
sin2 θ+ cos2 θ
= 2 sinθcosθ
sin2 θ+ cos2 θ
Use identity sin2 θ+cos2 θ= 1
= 2 sinθcosθ which is true
∴ 2 tanθ
1+ tan2 θ = 2sinθcosθ
g) cot θ+tanθ
cosecθ+ secθ = 1
cos θ+sin θ
Solution
Manipulating the left side
cot θ+tanθ
cosecθ+ secθ
Simplify
= 2 cosecθ
cosecθ+ secθ
Simplify further
= 1
cos θ+sin θ which is true
Thus cot θ+tanθ
cosecθ+ secθ = 1
cos θ+sin θ
= sin2 θ+ cos2 θ
cosθ
Apply the fraction rule:
= sinθ∗2 cosθ
sin2 θ+ cos2 θ
= 2 sinθcosθ
sin2 θ+ cos2 θ
Use identity sin2 θ+cos2 θ= 1
= 2 sinθcosθ which is true
∴ 2 tanθ
1+ tan2 θ = 2sinθcosθ
g) cot θ+tanθ
cosecθ+ secθ = 1
cos θ+sin θ
Solution
Manipulating the left side
cot θ+tanθ
cosecθ+ secθ
Simplify
= 2 cosecθ
cosecθ+ secθ
Simplify further
= 1
cos θ+sin θ which is true
Thus cot θ+tanθ
cosecθ+ secθ = 1
cos θ+sin θ
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MATHEMATICS 29
h) sin3x+cos3x = (sin x + cos x) (1-sin x cos x)
Solution
Manipulating left side
sin3x+cos3x
Factor sin3x+cos3x
= (cos x +sin x) (cos2 x + sin2 x – cos x sin x)
Using the following identity cos2 x + sin2 = 1
= (1- cos x sin x) (cos x +sin x) which is true
∴ sin3x+cos3x = (sin x + cos x) (1-sin x cos x)
QUESTION 10
Solve inequality cosecθ < 2 for value θ between 0 and 1800
Solution
Subtract 2 from both sides
cosecθ -2 < 2-2
Simplify
cosecθ -2 < 0
No solution for c
QUESTION 11
a) simplify (1-sinθ)(1+sinθ) secθ
Solution
h) sin3x+cos3x = (sin x + cos x) (1-sin x cos x)
Solution
Manipulating left side
sin3x+cos3x
Factor sin3x+cos3x
= (cos x +sin x) (cos2 x + sin2 x – cos x sin x)
Using the following identity cos2 x + sin2 = 1
= (1- cos x sin x) (cos x +sin x) which is true
∴ sin3x+cos3x = (sin x + cos x) (1-sin x cos x)
QUESTION 10
Solve inequality cosecθ < 2 for value θ between 0 and 1800
Solution
Subtract 2 from both sides
cosecθ -2 < 2-2
Simplify
cosecθ -2 < 0
No solution for c
QUESTION 11
a) simplify (1-sinθ)(1+sinθ) secθ
Solution
MATHEMATICS 30
Expand (1-sinθ) (1+sinθ)
Apply difference of two squares formula
= 12-sin2θ
Apply rule 1a = 1
12=1
= 1-sin2θ
= secθ (1-sin2θ)
Expand secθ (1-sin2θ)
Apply the distributive law:
= secθ. 1- secθ sin2θ
=1. Secθ - sin2θ secθ
Multiply: 1.secθ= secθ
= secθ - sin2θ secθ
b) solve inequality (1-sinθ) (1+sinθ) secθ > 1
2 for values of θ between -900 and 900
Solution
Express with sin, cos
(1-sinθ) (1+sinθ) 1
cosθ > 1
2
Simplify
= (1−sinθ )(1+ sinθ )
cosθ > 1
2
Expand (1-sinθ) (1+sinθ)
Apply difference of two squares formula
= 12-sin2θ
Apply rule 1a = 1
12=1
= 1-sin2θ
= secθ (1-sin2θ)
Expand secθ (1-sin2θ)
Apply the distributive law:
= secθ. 1- secθ sin2θ
=1. Secθ - sin2θ secθ
Multiply: 1.secθ= secθ
= secθ - sin2θ secθ
b) solve inequality (1-sinθ) (1+sinθ) secθ > 1
2 for values of θ between -900 and 900
Solution
Express with sin, cos
(1-sinθ) (1+sinθ) 1
cosθ > 1
2
Simplify
= (1−sinθ )(1+ sinθ )
cosθ > 1
2
MATHEMATICS 31
Find the zeroes and undefined points of (1−sinθ )(1+sinθ )
cosθ for 0≤ θ ≤3600
Identify the intervals
0≤ θ ≤900, 90≤ θ ≤2700, 2700≤ θ ≤3600
Identify the intervals that satisfy the required condition :> 0
𝜃¿ 0 or, 0 ≤ θ ≤900 or 2700
≤ θ ≤3600 or
𝜃¿ 3600
Merge Overlapping intervals
0 ≤ θ ≤900 or 2700≤ θ ≤3600
Apply the periodicity of (1-sinθ) (1+sinθ) secθ
3600
n ≤ θ ≤900 + 3600n or 2700 + 3600
n < θ ≤ 3600 + 3600
n and -900 ≤ θ ≤900
2700-3600 < θ < 900
Number line
Graph
Find the zeroes and undefined points of (1−sinθ )(1+sinθ )
cosθ for 0≤ θ ≤3600
Identify the intervals
0≤ θ ≤900, 90≤ θ ≤2700, 2700≤ θ ≤3600
Identify the intervals that satisfy the required condition :> 0
𝜃¿ 0 or, 0 ≤ θ ≤900 or 2700
≤ θ ≤3600 or
𝜃¿ 3600
Merge Overlapping intervals
0 ≤ θ ≤900 or 2700≤ θ ≤3600
Apply the periodicity of (1-sinθ) (1+sinθ) secθ
3600
n ≤ θ ≤900 + 3600n or 2700 + 3600
n < θ ≤ 3600 + 3600
n and -900 ≤ θ ≤900
2700-3600 < θ < 900
Number line
Graph
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MATHEMATICS 32
QUESTION 12
a) sec2x = 3 for 0 0≤ x ≤ 3600
Solution
General solution for Sec2x = 3
sec x = a which is x = arcsec a + 3600n, x = 3600 - arcsec a + 3600n
solve 2x = arcsec 3 + 3600n
Divide both sides by 2 and simplify
QUESTION 12
a) sec2x = 3 for 0 0≤ x ≤ 3600
Solution
General solution for Sec2x = 3
sec x = a which is x = arcsec a + 3600n, x = 3600 - arcsec a + 3600n
solve 2x = arcsec 3 + 3600n
Divide both sides by 2 and simplify
MATHEMATICS 33
x = arcsec 3+360 n
2
Solve 2x
x = arcsec 3+360 n
2 , x = 360−arcsec 3+360 n
2
Solution for the range 0≤ θ ≤3600
x = arcsec 3
2 , x= 360−arcsec 3
2 , x= arcsec 3+360
2 ,x = 720−arcsec 3
2
Show solution in decimal form
x = 1.23095
2 , x= 360−1.23095
2 , x= 1.23095+360
2 , x = 720−1.23095
2
b) 3 cosec22x = 4 for 0 0≤ x ≤ 1800
Solution
3 cosec22x = 4
Dividing both sides by 6 cos (e) c2
= 3 cos( e) c2 2 x
6 cos(e)c2
= 4
6 cos( e) c2
Simplify
x = 2
3 cos( e) c2 ; c≠ 0
x = arcsec 3+360 n
2
Solve 2x
x = arcsec 3+360 n
2 , x = 360−arcsec 3+360 n
2
Solution for the range 0≤ θ ≤3600
x = arcsec 3
2 , x= 360−arcsec 3
2 , x= arcsec 3+360
2 ,x = 720−arcsec 3
2
Show solution in decimal form
x = 1.23095
2 , x= 360−1.23095
2 , x= 1.23095+360
2 , x = 720−1.23095
2
b) 3 cosec22x = 4 for 0 0≤ x ≤ 1800
Solution
3 cosec22x = 4
Dividing both sides by 6 cos (e) c2
= 3 cos( e) c2 2 x
6 cos(e)c2
= 4
6 cos( e) c2
Simplify
x = 2
3 cos( e) c2 ; c≠ 0
MATHEMATICS 34
QUESTION 13
Simultaneous equation
cosec 2x = √ 2
cot (x+y) = √3
Solution
cosec x can’t be greater than one for real solutions
no solution for cot (x+y) = √3
since x ε R
QUESTION 13
Simultaneous equation
cosec 2x = √ 2
cot (x+y) = √3
Solution
cosec x can’t be greater than one for real solutions
no solution for cot (x+y) = √3
since x ε R
1 out of 34
Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.