Calculation and Graphs for Engineering Mathematics

Verified

Added on  2023/06/04

|9
|780
|350
AI Summary
This document provides detailed calculations and graphs for various topics in engineering mathematics, including amplitude, periodic time, phase angle, and more. It also includes solutions for complex equations and problems. The references used for this document are Singh (2011) and Stroud and Booth (2013).

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Q1.
a.
Amplitude=34 0 V
Periodic time , T =2 π
w
w=50 π rads/ s
T =0.04 s
Phase angle=0.541 rads
Phase angle=.541× 180 °
π
Phase angle=30.997 °
b.
V =340sin ( 50 πt30.997 )
t=0 s
V =340sin ( 030.997 )
V =340sin (30.997 )
V =340×.4068
V =138.312V
c.
angle θ °=50 π × 0.01× 180
π
θ=90 °
V =340sin (9030.997)
V =340sin ( 59.003 ° )
V =215.696V
d.
angle β ° =50 πt × 180
π =9000t
200 V =340 V ×sin ( 9000 t30.997 )

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
9000 t30.997=sin1 ( 200
340 )¿
9000 t=30.997+36.03
t= 67.027
9000
t=0.00745 s
e.
At max voltage ,
sin ( 9000 t 30.997 ) =1
9000 t30.997=sin1 1
9000 t=90+30.997
t= 120.997
9000
t=0.0134 s
f.
at t=0 ,
V =340sin (0.541 )=175.098 V
at V =0 ,
sin ( 50 πt0.541 )=0
50 πt0.541=0
t=0.00344 s
at V =V max
d V
d t =0=340 cos ( 50 πt0.541 ) × 50 π
cos ( 50 πt0.541 ) =0=cos π
2
50 πt0.541= π
2
t=0.01344 s
at next x intercept , 1
2 cycle
t=0.01344+ ( 0.013440.00344 )
¿ 0.02344 s
at 3
4 cycle
t=0.03344 s
at full cycle
t=0.04344 s
Document Page
A graph of V against t
Q2
R 4
Document Page
3
R= {32+ 42 }
R=5
tan α= 5 sin ( a )
5 sos ( a ) = 4
3
α =tan1 4
3
α =¿53.13°
α =53.13 × π
180 =0.927
5 sin(wt +0.927)
A graph of 3sinwt, 4coswt and R(sinwt+ϕ) against t
0 1 2 3 4 5 6 7
-6
-4
-2
0
2
4
6
Chart Title
y=3sinωt y=4cosωt y=Rsin(ωt+φ)

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Q3
a.
A Graph of V1, V2 and V1+V2 against t
-8 -6 -4 -2 0 2 4 6 8
-20
-15
-10
-5
0
5
10
15
20
-15
-10
-5
0
5
10
15
V1
V2
V1 +V2
Column G
t
Axis Title
Document Page
b.
i.
15 sin (20 πt+ π
4 )+10 sin (20 πt π
2 )
15 ( sin 20 πt ) cos ( π
4 )+cos ( 20 πt ) sin ( π
4 )¿+¿ 10 ¿
15 ( 0.7071 sin (20 πt)+0.7071 cos ( 20 πt ) ) 10 cos (20 πt)
10.6065 sin (20 πt)+10.6065 cos (20 πt )
10.6065 sin ( 20 πt ) 0.6065 cos ( 20 πt )
R= 10.60652 +0.60652 =10.623
10.6065
R 0.6025
tan ( φ )= 0.6065
10.6065
φ
Document Page
φ=0.005326 rads
V 1 +V 2=10.623 sin ( 20 πt0.005326)
ii.
From the graph, the value the amplitude of V1 + V2 was found to be 10.625. From
calculation, the amplitude was found to be 10.623. There is a slight error of 0.002.
This show that both the empirical and the analytical solution bring the same result.
The graph of V1 +V2 lags by 2.43 radians from the empirical solution. However,
from the analytical solution, the curve lags by 0.005326radians.
Q4.
r1 × F1=
| i j k
3 1 5
2 1 1|
¿ i ( 1+5 ) j ( 310 )+k (32)
¿ 6 i+7 j5 k
r2 × F2=
|i j k
5 2 1
8 6 6 |
¿ i ( 126 ) j ( 30+8 ) +k (30+16)

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
¿18 i38 j14 k
r3 × F3=
| i j k
1 6 7
4 0 3|
¿ i (180 ) j ( 328 )+k (0+ 24)
¿18 i+25 j+24 k
r 4 × F4 =
|i j k
1 0 6
1 5 0|
¿ i ( 0+30 ) j ( 06 ) + k (50)
¿ 30 i+ 6 j5 k
(r ¿¿ 1 × F1)+¿ ¿ ¿
¿+ ( 18 i38 j14 k ) + ( 18i +25 j+24 k ) +(30i+6 j5 k )
¿ 6 i18 i18 i+ 30i+7 j38 j+25 j+6 j5 k 14 k +24 k5 k =0
References
Document Page
Singh, K., 2011. Engineering mathematics through applications. Macmillan International Higher
Education.
Stroud, K.A. and Booth, D.J., 2013. Engineering mathematics. Macmillan International Higher
Education
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]