Solved ENM2600 Engineering Mathematics Assignment 1 with Explanations

Verified

Added on  2023/06/13

|21
|2871
|239
Homework Assignment
AI Summary
This document presents a detailed solution to an Engineering Mathematics assignment, covering topics such as finding roots of complex equations and representing them on the Argand diagram, determining distances between roots, calculating moduli and arguments, and expressing roots in polar form. It further explores Cartesian equations of loci, including circles, ellipses, straight lines, and rays, derived from complex number relationships. The solution also addresses separable and inseparable differential equations, integrating factors, and particular solutions. The final question involves modeling battery discharge using differential equations and determining the discharge time. Desklib offers a wide array of solved assignments and past papers for students seeking academic assistance.
Document Page
Running head: ENGINEERING MATHEMATICS 1
Engineering Mathematics
Name
Institution
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ENGINEERING MATHEMATICS 2
Question 1
Given that , z3 +6 z2+37 z+58=0
Using the rational root theorem, a0=58 , an=1
The dividers of 58 are :1,2,29,58
Checking out the dividers 1,2,29,58 we get that 2 is a root and we factor out (z +2) and divide
the equation z3 +6 z2+37 z +58 by (z +2) to obtain:
z3 +6 z2 +37 z+58
z +2 =z2+4 z +2 9
z3 +6 z2+37 z +58= ( z+2 ) ( z2 +4 z +29 )=0
( z +2 )=0 , z=2
Also, z2+ 4 z +2 9=0. We find z using the quadratic formula
z=b ± b24 ac
2 a =4 ± 424 (29)
2 =4 ± 100
2 =¿
4 ± i 100
2 =4 ±10 i
2 =2 ±5 i
z=2+5 i , z =25 i
Thus, z=2 , z=2+5 i, z=25 i
Figure 1 shows the roots plotted on the argand diagram
Document Page
ENGINEERING MATHEMATICS 3
Figure 1: Argand Diagram
Part b
z=2z=2+5 i,
Distance between the roots= (50)2 +(22)2= 41
z=2z=25 i ,
Distance between the roots= (50)2+(22)2= 41
z=2+5 iz=25 i,
Distance between the roots= (55)2 +(2(2))2=10
Part c
Document Page
ENGINEERING MATHEMATICS 4
Modulus of z=2
¿ (2)2=2
Argument ( z=2 ) =0
Modulus of of z=2+5 i
¿ (2)2 +(5)2= 29
Argument of ( z=2+5 i ) =180tan1
( 5
2 )=111.8014 °
Modulus of z=25 i
¿ (2)2 +(5)2= 29
Argument of ( z=25 i )=180+tan1
(5
2 )=248.1986 °
Part d
Polar form of z=2 ¿ , z=r θ=2 0
Polar form of z=2+5 i ¿ , z =r θ= 29 111.8014 °
Polar form of z=25 i¿ , z=r θ= 29 248.1986 °
Question 2
Part a
24 j+ ( z2 j ) ( z 2 j )¿
¿ 4 j+3¿=7(4 j+2)¿ ¿
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ENGINEERING MATHEMATICS 5
24 j+ ( x + yj2 j ) ( x+ yj2 j ) ¿
42 +32 =7(4 j+2)¿
24 j+ ( x +( y2) j ) ( x +( y2) j )
5 =7(4 j+2)
24 j+ x2 ( y2 ) 2
5 =54 j
2+ x2 ( y2 ) 2
5 =5
10+x2 ( y 2 )2=25
x2 ( y2 ) 2=15. Hence, it is a hyperbola
Part b
arg ( z4+ j ) =arg( j 3+3)
arg ( x+ yj4+ j ) =arg( j 3+3)
arg ( x4+ ( y +1 ) j ) =arg( j 3+3)
tan1
( y +1
x4 )=π tan1 (¿¿ 3/3)¿ ¿
tan1
( y +1
x4 )=π π
6 = 5
6 π
y +1
x4 =tan ( 5
6 π )
y +1
x4 =1
3
Document Page
ENGINEERING MATHEMATICS 6
y +1=1
3 ( x4 )
The equation is that of a straight line which passes via ( 4 ,1 )with the gradient ¿ 1
3
Part c
|z47 j|+| z4 +3 j|=16
|x + yj47 j|+|x + yj4 +3 j|=1 6
|( x4 ) +( y7) j|+|( x4 ) +( y +3) j|=16
( x4)2 +( y7)2+ ( x4)2+( y +3)2=1 6
(x4)2 +( y7)2=16 (x4)2+( y +3)2
(x4)2+( y 7)2= (16 ( x4 )2 + ( y +3 )2 )2
(x4)2+( y 7)2=21632 ( x4 ) 2 + ( y +3 ) 2 + ( x4 ) 2 + ( y +3 ) 2
( y7)2 ( y+ 3 ) 2=21632 ( x4 )
2 + ( y +3 ) 2
y214 y+ 49 y26 y9=21632 ( x4 ) 2 + ( y +3 ) 2
20 y +40256=32 ( x4 )
2 + ( y +3 )
2
20 y +216=32 ( x4 ) 2 + ( y +3 ) 2
( 20 y+ 216
32 )
2
= ( x 4 ) 2+ ( y+3 ) 2
Document Page
ENGINEERING MATHEMATICS 7
( 20 y2+8640 y +46656
1024 )=x28 x+16 + y2+ 6 y+ 9
If we rearrange and simplify the equation we obtain,
256
251 ( x4 )2 + y2 624
251 y35.187=0
( x4 )
0.981
2
+ y2 624
502 y +1.54536.732=0
( x4 )
36.016
2
+ ( y1.24 )
36.732
2
=1
Thus, the equation defines an ellipse
f = 36.73236.016=0.84 6
Coordinates of foci are ( 0.85 , 4 ) (0.85 ,1.24 )
Question 3
Part a
y' =ln (x y ) is inseparable since we cannot move the variables x and y to opposite sides of the
equation.
Part b
y' = ln ( x )
ln ( y)
The equation is separable as follows.
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ENGINEERING MATHEMATICS 8
y' = dy
dx = ln ( x )
ln ( y )
ln ( y )dy =ln ( x ) dx
ln ( y ) dy = ln ( x ) dx
y ln ( y ) y =xln ( x )x +C
Part c
( x2 y y ) y'=xy2+ x .
The equation is separable as shown below
( x2 y y ) y'= ( x2 y y ) dy
dx =xy2 + x
y ( x21 ) dy
dx =x ( y ¿¿ 2+1)¿
y
( y ¿¿ 2+1)dy= x
(x ¿¿ 21)dx ¿ ¿
y
( y¿ ¿2+1) dy = x
( x¿ ¿ 21)dx ¿ ¿
We let u=( y ¿¿ 2+1)¿ such that, dy = 1
2 y du
So that,
y
( y¿ ¿2+1) dy = y
u
1
2 y du= 1
u
1
2 du ¿
Document Page
ENGINEERING MATHEMATICS 9
¿ 1
2 1
u du=1
2 ln ( u ) +C=1
2 ln( y ¿¿ 2+1)+ C ¿
Then, we let (x ¿¿ 21)=u ¿ so that, dx= 1
2 x du
x
( x ¿¿ 21)dx = x
u
1
2 x du= 1
u
1
2 du=¿ ¿
1
2 1
u du=1
2 ln ( u ) +C=1
2 ln( x ¿¿ 21)+C ¿
1
2 ln( y¿ ¿2+1)+C= 1
2 ln (x ¿¿ 21)+C ¿ ¿
ln ( y ¿¿ 2+ 1)=ln (x ¿¿ 21)+C ¿ ¿
Question 4
e y (1+ y' )=1
( 1+ dy
dx )= 1
e y =ey
dy
dx =e y1
dy
e y1 =dx
Integrating both sides
dy
e y1 =dx=x +C
Let e y=u , du=e y dy
Document Page
ENGINEERING MATHEMATICS 10
dy
e y1 = du
u(u1) = 1 du
u + ¿ 1 du
( u1 ) ¿
¿ln ( u ) +ln ( u1 ) =ln ( u1
u )
ln (u1
u )=x +C
ln ( ey 1
e y )=x +C
ex +C= e y1
ey
Substituting y ( 0 ) =ln (4)
e0+C = ey 1
e y =e ln (4)1
eln (4 )
eC=1eln ( 4 ) =14=3
lneC=ln (3)
C=ln ( 3 )
ex
3 = e y
ey +1
ex= 3 e y
e y +1
x ( y )=ln ( 3 e y )ln (e y +1)
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ENGINEERING MATHEMATICS 11
x ( y )=ln ( 3 ) + ln ( ey ) ln (e y+1)
The particular solution is, x ( y )=ln ( 3 ) + yln (ey +1)
Question 5
( x +1 ) y'2 y=ex (x+1)3
The equation is linear, non-homogeneous, and non-separable
We rewrite the equation in the form
y' ( x ) + p ( x ) y=q( x )
p ( x )= 2
x +1 ,q ( x ) =ex (x+ 1)2
We find the Integrating Factor (IF)
d ( IF )
dx =IF ( 2
x+1 )
d ( IF )
dx
IF = ( 2
x+1 )
d
dx ln ( IF )= ( 2
x +1 )
ln ( IF )= ( 2
x+1 )dx=2 ln ( x +1 ) +C=ln ( eC
( x +1 )2 )
( IF ) = eC
( x+1 ) 2 = 1
( x +1 ) 2
Document Page
ENGINEERING MATHEMATICS 12
Putting the equation in the form, ( IF . y )' =IF .q (x) we obtain
d
dx ( 1
( x +1 ) 2 y ) =q ( x ) = 1
( x+ 1 ) 2 ex ( x+1)2=ex
1
( x+1 )2 y = ex dx=ex +C
y ( x ) =ex ( x +1 ) 2 +C ( x +1 ) 2
Applying the initial condition y ( 0 ) =3
y ( 0 ) =e0 ( 0+1 ) 2 +C ( 0+ 1 ) 2=3
1+C=3 , C=2
Substituting C=2 we obtain:
y ( x ) =ex ( x +1 ) 2 +2 ( x+1 )2 =(e x+ x ) ( x +1 ) 2
y ( x ) =(ex+ x ) ( x +1 ) 2
Plotting y ( x ) we obtain
chevron_up_icon
1 out of 21
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]