This document provides solutions and graphs for exponential and logarithmic functions. It covers topics such as domain, range, series, scatter plots, linear regression, population growth, and compound interest.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running head: EXPONENTIAL AND LOGARITHMIC FUNCTION Exponential and Logarithmic Function Name of the Student: Name of the University: Author Note:
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
4EXPONENTIAL AND LOGARITHMIC FUNCTION Figure 2: Graph off(x)=23x−3 Domain:{xϵR} Range:{f(x)ϵR|f(x)>−3} Solution 3 2x−1=8x+3 2x−1=23(x+3) x−1=3(x+3) 3x−x=−1−3 x=−4 2=−2 Solution 4 52x+12=2510x−12 52x+12=52(10x−12) 2x+12=2(10x−12) 20x−2x=12+24 18x=36 x=36 18=2 Solution 5 0.75, 3, 12, . . ., The nthterm of the series istn=4n
5EXPONENTIAL AND LOGARITHMIC FUNCTION Solution 6 0.4, -2, 10, … The nthterm of the series istn=−5n. Solution 7 log864¿log882 ¿2log88=2 Solution 8 log71¿log770 ¿0log77=0 Solution 9 log5 1 25¿log55−2 ¿−2log55=−2 Solution 10. A n(t)=920log10(t−1) n(4)=920log10(4−1) n(4)=920log103 n(4)=920∗0.477 n(4)=438.95 n(4)≅439
6EXPONENTIAL AND LOGARITHMIC FUNCTION After 4 months, there will be 439 dolphins in the ocean region. Solution 10. B n(t)=920log10(t−1) n(24)=920log10(24−1) n(24)=920log1023 n(24)=920∗1.362 n(24)=1252.79 n(24)≅1253 After 2 years that means 24 months, there will be 1253 dolphins in the ocean region. Solution 11. A Distance in MilesFare in Dollars 29.25 519.75 829.75 1244.5 The scatter plot of the above data presents an upward rising linear relationship between distance and fare. So, the linear regression model will work best with the data.
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
7EXPONENTIAL AND LOGARITHMIC FUNCTION Figure 3: Scatter plot with the trend equation. The equation isy=3.5126x+2.1027 Solution 11. B y=3.5126x+2.1027 y=3.5126∗10+2.1027 y=35.126+2.1027 y=37.2287 Solution 12. log43+log4x=log412 log43x=log412 3x=12 x=12 3=4
9EXPONENTIAL AND LOGARITHMIC FUNCTION x=−9,4 Solution 16. A YearX (year)Population=(Pt-Pt-1)*100/Pt-1 20051420 20062390-7.143% 20073379-2.821% 20084360-5.013% 20095342-5.000% Solution 16. B Figure 4: Logerithmic function for population growth y=−46.08lnx+422.32 Where, y is the population and x is the year. Solution 16. C For 2020, x is equal to 16. y=−46.08ln16+422.32 y=294.56
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
13EXPONENTIAL AND LOGARITHMIC FUNCTION log6 (5x−3) x+9=0 (5x−3) (x+9)=60=1 (5x−3)=x+9 ¿ 4x=12 x=3 Solution 26 log8(x2+6)=log8(5x) log8(x2+6)−log8(5x)=0 log8 (x2+6) 5x=0 (x2+6) 5x=80 x2+6=5x x2−5x+6=0 (x−3)(x−2)=0 x=3,2 Solution 27. A The formula for future amount when the interest is continuously compoundedA=Pert. Future amount, A= $2400
14EXPONENTIAL AND LOGARITHMIC FUNCTION Present value, P= $2000 Interest, r= 2.5% Time, t=? A=Pert 2400=2000e0.025t 6 5=e0.025t ln6 5=0.025tlne t=1 0.025ln6 5 t=7.293 Solution 27. B Future amount, A=2P A=Pert 2P=Pert 2=e0.025t ln2=0.025tlne t=1 0.025ln2 t=27.726
15EXPONENTIAL AND LOGARITHMIC FUNCTION Solution 27. C Future amount, A= $5000 Interest, r= 2.5% Time, t=10 years Present value, P=? A=Pert 5000=Pe0.025∗10 5000 P=e0.25 5000=1.284∗P P=5000 1.284=3894.004