F-18 Longitudinal Dynamics: Stability, Control and Plots
Verified
Added on  2023/05/30
|5
|698
|459
AI Summary
Learn about the stability and controllability of F-18 Longitudinal Dynamics system and plot magnitude and phase plots. Get insights into the equivalent compensator for the closed loop system.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Consider the F-18 LongitudinalDynamics.............................1 For system stability................................................3 for magnitude and phase plots.......................................4 For System Controllability..........................................5 ConsidertheF-18LongitudinalDynamics A=[-0.0239 -28.31720-32.2;-0.0003-0.362110;0-2.2115-0.25320;0010] B=[-3.8114 0.001;-0.05150;-2.87910;00] C=[0 -1 0 1;1000] ...Compute theopenloopsystemmodes ...To obtaintheeigenvaluesandeigenvectors [V,D]=eig(A); disp('EigenValues:') disp(abs(V)) disp('EigenVector:') disp(abs(D)) poles=[-1.149;-8;-8.5;-9];%placeobserverpoles K=place(A,B,abs(poles)); disp(abs(K)) [t1 t2]=eig(A-B*K) eig(A-B*K) pls=[-0.05+0.09i,-0.05-0.09i,-1.05+1.1i,-1.05-1.1i]; L=place(A',C',pls')' % To obtaintheeigenvalue eig(A-L*C) Ac=abs(A-B*K-L*C); Bc=L; Cc=abs(K); Gcss=ss(Ac,Bc,Cc,0); Gc=tf(Gcss); zpk(Gc) A = -0.0239-28.31720-32.2000 -0.0003-0.36211.00000 1
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
For SystemControllability disp('Testingforsystemcontrollability:') sysCont=ctrbf(Ac,Bc,Cc); ranQx=rank(sysCont); if(ranQx==rank(Ac)) disp('Systemiscontrollable') else disp('SystemisNOTcontrollable') end Testing for systemcontrollability: System is controllable 5