Fixed Income Securities and Interest Rate Modelling | Assignment

Verified

Added on  2022/09/12

|8
|342
|16
AI Summary
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Fixed Income Securities and Interest Rate Modelling 1
FIXED INCOME SECURITIES AND INTEREST RATE MODELLING
by Student’s Name
Code + Course Name
Professor’s Name
University Name
City, State
Date
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Fixed Income Securities and Interest Rate Modelling 2
Fixed Income Securities and Interest Rate Modelling
1.
a. Expected 6 month treasury rate
Po=97.4845, Pu = 0.5 Pd = 0.5
When r1=r1 ,u P1 , u=100 e0.04 × 0.5=98.0199
The return then is 98.0199
97.4845 1=0.00549
When r1=r1 ,d P1 ,d =100 e0.01 ×0.5 =99.5012
The return here is 99.5012
97.4845 1=0.0207
E [ r1 ]= ( 0.00549 × 0.5+0.0207 ×0.5 )
¿ 0.013095=1.31%
b. Market price of risk
λ= er0
E [ P1 ] P0
P1 , uP1 ,d
E [ P1 ]=99.5012 ×0.5+98.0199× 0.5
¿ 98.76055
λ= e0.02× 0.5 98.7605597.4845
98.019999.5012
¿0.1980
Document Page
Fixed Income Securities and Interest Rate Modelling 3
c. Risk neutral probability for an upward movement in the interest rate
λ¿= ero E¿ [ P1 ]Po
P1 ,u P1 ,d
=0
E¿=P u¿ P1 ,uP d¿ P1 , dP d¿+P u¿=10<Pu¿<1 ,
P d¿=1P u¿
Hence Po=ero E¿ [ P1 ]
Solving, 98.76055=e0.02 ×0.5 ( 98.0199+99.501299.5012 )
P u¿=98.76055 e0.02 × 0.599.5012
98.019999.5012
¿ 0.1667
P d¿=10.1667=0.8333
d. Option
i. Price of option
r1=0.04 , thus0.040.02=0.02
max {0.02 , 0 }=0.02
payoff of A=100× 0.02
¿ 2
ii. Replicating portfolio
Using replication
Payoff ¿ 2 with price=99.005
the 2 period has 98.019999.5012 with price=97.4845
We consider a portfolio A:
Document Page
Fixed Income Securities and Interest Rate Modelling 4
Investing 25.89 and -26.677 of A in the above, we have
¿ 2 ×99.0052× 97.4845
¿ 3.041
2. Risk-neutral interest rate tree
r0 ¿ 0.05
r1=0.055× 0.5+0.047 × 0.5=0.051
r2=0.06 ×0.5+0.05 × 0.5+0.045 ×0.5=0.1025
a. Interest rate swap at t=0
The fixed rate is 100 ×5 %=5
Float ¿ 5 ×100 ×r2 ( t1)
The floating leg
t rates float fixed
0 5% 5
1 5.1% 5.0 5
2 10.25% 5.1 5
The swap rate c ¿ 0.5 ( 1c ) =1
c=1 %
b. Price at t=0
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Fixed Income Securities and Interest Rate Modelling 5
K = 100
R = 5%
T = 3 years
P0 ¿ 100 e0.05 ×3=86.0708
c. Value of the a 3 year callable bond
Par value = P
Coupon = c
Maturity = T
Vt= Ex-coupon price
V t=E¿ [ ert ( c +Vt +1 ) ]
VT=P
3. 6 month ZCB FV= 100 price = 100
1 year ZCB FV= 100 price =100
A two step Ho-Lee
r0 =100 er0 ×0.5 =98 r 0=0.04
ru =0.04+ 0.5+0.01 0.5
rd =0.04 + 0.50.01 0.5=ru 2× 0.01 0.5
96=100 er0 × 0.5 [ 0.5 er u ×0.5+0.5 e ( ru ×0.5 ) ×0.5 ]
eru × 0.5=
96
100 er 0 ×0.5
0.5+0.5 e2 × 0.01 0.5 × 0.5 =0.9829
ru =0.0345
Document Page
Fixed Income Securities and Interest Rate Modelling 6
erd
=0.98292× 0.01 0.5=0.9687
rd =0.0636
= 0.0636.04+0.01 0.5
0.5 =0.0613
So, ru =0.0345, rd =0.0636, =0.0613
4. Vasicek interest rate model
With parameters γ= 0.3262, r= 0.0509, σ= 0.0221
risk-neutral process has parameters γ*= 0.4653, r¿= 0.0634
ro= 0.055
a. d rt =γ [ rrt ] dt+σdWι
Ε [ r1 ]=Ε [ r0 eγ +r (1eγ ) +σ ( γ+r¿ ) e γ
]
¿ 0.055 e0.3262+ 0.0509 ( 1e0.3262 )+ 0.0221 ( 0.4653+ 0.0634 ) e0.3262
¿ 0.0655
r10=0.055 e0.3262 ×10 +0.0509 ( 1e0.3262 ×10 ) +0.0221 ( 0.4653 e10+ 0.0634 e10 ) e0.3262
¿ 0.050167
The slope shows a decreasing curve, the expectation is that the rates should increase over time
but the observation made show a decreasing curve which may be due to market segmentation
b. Market price
At t = 0;
The market price for 100 nominal will be
Document Page
Fixed Income Securities and Interest Rate Modelling 7
100 ( e0.0655 )
¿ 93.6599
c. Plot of the term structure of interest rates
r5 =0.055 e0.3262×5 +0.0509 ( 1e0.3262× 5 ) + 0.0221 ( 0.4653 e5 +0.0634 e5 ) e0.3262=0.052
r15=0.055e0.3262 ×15 +0.0509 ( 1e0.3262 ×15 ) +0.0221 ( 0.4653 e15+0.0634 e15 ) e0.3262=0.051
r20=0.055 e0.3262 ×20 +0.0509 ( 1e0.3262 ×20 ) +0.0221 ( 0.4653 e20+0.0634 e20 ) e0.3262=0.05091
r30=0.055 e0.3262 ×30 +0.0509 ( 1e0.3262 ×30 ) +0.0221 ( 0.4653 e30+ 0.0634 e30 ) e0.3262=0.05090
d. Varying γ
Say, γ1> γ
r5 =0.055 e0.1234× 5+ 0.0509 ( 1e0.1234 ×5 ) +0.0221 ( 0.4653 e5 +0.0634 e5 ) e0.1234=0.0532
r15=0.055e0.1234 ×15 +0.0509 ( 1e0.1234× 15 ) + 0.0221 ( 0.4653 e15 +0.0634 e15 ) e0.1234=0.0515
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Fixed Income Securities and Interest Rate Modelling 8
The rates are increasing with an increasing γ.
e. Varying r
Taking a greater r say 0.065>0.05091
r5 =0.055 e0.3262×5 +0.065 ( 1e0.3262× 5 )+ 0.0221 ( 0.4653 e5 +0.0634 e5 ) e0.3262=0.0596
r15=0.055e0.3262 ×15 +0.065 ( 1e0.3262 ×15 ) +0.0221 ( 0.4653 e15+0.0634 e15 ) e0.3262=0.06343
The rates are increasing with an increasing r
f. Varying σ
Taking a greater σ, say 0.035>0.0221
r5 =0.055 e0.3262×5 +0.0509 ( 1e0.3262× 5 ) + 0.035 ( 0.4653 e5+ 0.0634 e5 ) e0.3262=0.05322
r15=0.055e0.3262 ×15 +0.0509 ( 1e0.3262 ×15 ) +0.035 ( 0.4653 e15+0.0634 e15 ) e0.3262=0.0725
An increasing σ, leads to increased return rates.
chevron_up_icon
1 out of 8
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]