Fluid Dynamics: Solved Problems and Formulas

Verified

Added on  2023/06/10

|8
|561
|180
AI Summary
This article provides solutions to problems related to fluid dynamics, including angular velocity, linear speed, tension, and frequency of oscillation. It also includes diagrams and formulas for a better understanding of the subject.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Fluid Dynamics 1
FLUID DYNAMICS
by [NAME]
Course
Professor’s Name
Institution
Location of Institution
Date
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Fluid Dynamics 2
Fluid Dynamics
Question 1
Shaft diameter = 400 mm
RPM = 2550
a. Angular Velocity
Each revolution generates an angle of 2 π radians
Therefore the angular velocity ¿ number of rovolutions per minute × 2 π radians
1revolution
¿ 2550
1minute × 2 π radians
1 revolution
¿ 5100 π radians per minute
¿ 85 π rad /sec
¿ 267.035 rad /s
b. Linear speed of a point on the circumference of the shaft
The linear speed = radius × angular velocity
¿ 0.2 m× 267.035
¿ 53.407 m/s
c. Angular acceleration
angular acceleretaion α = ω
t
Document Page
Fluid Dynamics 3
RPM=4500,
Therefore angular velocity ¿ 4500
1minute × 2 π radians
1 revolution
¿ 9000 π radians
minute
¿ 150 πradians /sec
¿ 471.239 rad / s
Therefore α = ω
t = 471.239267.035
30
¿ 6.8068 rad / s2
d. Linear acceleration
at=r ω
t
But α = ω
t
Therefore at=r α
¿ 0.2 ×6.8068
¿ 1.36136 m/s2
Question 2
a. Diagram of the System
Document Page
Fluid Dynamics 4
b. Tension above the balancing mass
The machine moves for 3m
Therefore the diameter ¿ 3
π =0.9549m
Thus r =0.4775 m
ω= v
r = 2.4
0.4775
¿ 5.0265 rad / s
tension=mr ω2mg
¿ 300 ×3 ×5.02652 300× 9.81
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Fluid Dynamics 5
¿ 19789.132 N
c. Tension above the machine
t ension=mr ω2mg
¿ 150 ×3 ×5.02652150× 9.81
¿ 9898.066 N
Question 3
a. Velocity of the Hammer
v2=u2 +2 as
But u=0
Therefore v2=2 as
¿ 2 ×9.81 ×2.25
¿ 44.145
v=6.644 m/s
b. Common Velocity
The potential energy of the pile driver¿ mgh=1000 × 9.81× 0.6
¿ 5886 N
The force of the hammer on the pile driver = the potential energy of the pile driver
Force of the hammer 5886=500 a
Document Page
Fluid Dynamics 6
Therefore a=11.772 m/s2
v2=u2 +2 as
v2=2× 11.772× 2.25
v2=52.974
v=7.278 m/s
c. Average Resisting Force
Resisting force of the ground = the force exerted by the harmer and the pile
¿ 5886+5886
¿ 11772 N
Question 4
a. Frequency of Oscillation
F=18 N
x=25 mm
But F=kxwhere k is the spring constant
Therefore 18=0.025 k
k =720 N /m
ω= k
m= 720
20 =36 rad /s
Document Page
Fluid Dynamics 7
Frequency f = ω
2 π = 36
2 π
¿ 5.73 Hz
b. Maximum Acceleration
amax=xmax × ω2 where xmax =maximum displacement
Therefore amax=0.025× 362
¿ 32.4 m/s2
c. Velocity when at 10 mm away
v=ω × A
¿ 36 ×0.01
¿ 0.36 m/s
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Fluid Dynamics 8
References
Johnson, R.W., 2016. Handbook of fluid dynamics. Crc Press.
Munson, B.R., Okiishi, T.H., Huebsch, W.W. and Rothmayer, A.P., 2013. Fluid mechanics.
Singapore: Wiley.
Pain, H.J., 2017. THE PHYSICS OF VIBRATIONS AND WAVES Sixth Edition. John Wiley &
Sons Ltd.
Sone, Y., 2012. Kinetic theory and fluid dynamics. Springer Science & Business Media.
chevron_up_icon
1 out of 8
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]