ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

Fluid Dynamics: Solved Problems and Formulas

Verified

Added on  2023/06/10

|8
|561
|180
AI Summary
This article provides solutions to problems related to fluid dynamics, including angular velocity, linear speed, tension, and frequency of oscillation. It also includes diagrams and formulas for a better understanding of the subject.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Fluid Dynamics 1
FLUID DYNAMICS
by [NAME]
Course
Professor’s Name
Institution
Location of Institution
Date

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Fluid Dynamics 2
Fluid Dynamics
Question 1
Shaft diameter = 400 mm
RPM = 2550
a. Angular Velocity
Each revolution generates an angle of 2 π radians
Therefore the angular velocity ¿ number of rovolutions per minute × 2 π radians
1revolution
¿ 2550
1minute × 2 π radians
1 revolution
¿ 5100 π radians per minute
¿ 85 π rad /sec
¿ 267.035 rad /s
b. Linear speed of a point on the circumference of the shaft
The linear speed = radius × angular velocity
¿ 0.2 m× 267.035
¿ 53.407 m/s
c. Angular acceleration
angular acceleretaion α = ω
t
Document Page
Fluid Dynamics 3
RPM=4500,
Therefore angular velocity ¿ 4500
1minute × 2 π radians
1 revolution
¿ 9000 π radians
minute
¿ 150 πradians /sec
¿ 471.239 rad / s
Therefore α = ω
t = 471.239267.035
30
¿ 6.8068 rad / s2
d. Linear acceleration
at=r ω
t
But α = ω
t
Therefore at=r α
¿ 0.2 ×6.8068
¿ 1.36136 m/s2
Question 2
a. Diagram of the System
Document Page
Fluid Dynamics 4
b. Tension above the balancing mass
The machine moves for 3m
Therefore the diameter ¿ 3
π =0.9549m
Thus r =0.4775 m
ω= v
r = 2.4
0.4775
¿ 5.0265 rad / s
tension=mr ω2mg
¿ 300 ×3 ×5.02652 300× 9.81

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Fluid Dynamics 5
¿ 19789.132 N
c. Tension above the machine
t ension=mr ω2mg
¿ 150 ×3 ×5.02652150× 9.81
¿ 9898.066 N
Question 3
a. Velocity of the Hammer
v2=u2 +2 as
But u=0
Therefore v2=2 as
¿ 2 ×9.81 ×2.25
¿ 44.145
v=6.644 m/s
b. Common Velocity
The potential energy of the pile driver¿ mgh=1000 × 9.81× 0.6
¿ 5886 N
The force of the hammer on the pile driver = the potential energy of the pile driver
Force of the hammer 5886=500 a
Document Page
Fluid Dynamics 6
Therefore a=11.772 m/s2
v2=u2 +2 as
v2=2× 11.772× 2.25
v2=52.974
v=7.278 m/s
c. Average Resisting Force
Resisting force of the ground = the force exerted by the harmer and the pile
¿ 5886+5886
¿ 11772 N
Question 4
a. Frequency of Oscillation
F=18 N
x=25 mm
But F=kxwhere k is the spring constant
Therefore 18=0.025 k
k =720 N /m
ω= k
m= 720
20 =36 rad /s
Document Page
Fluid Dynamics 7
Frequency f = ω
2 π = 36
2 π
¿ 5.73 Hz
b. Maximum Acceleration
amax=xmax × ω2 where xmax =maximum displacement
Therefore amax=0.025× 362
¿ 32.4 m/s2
c. Velocity when at 10 mm away
v=ω × A
¿ 36 ×0.01
¿ 0.36 m/s

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Fluid Dynamics 8
References
Johnson, R.W., 2016. Handbook of fluid dynamics. Crc Press.
Munson, B.R., Okiishi, T.H., Huebsch, W.W. and Rothmayer, A.P., 2013. Fluid mechanics.
Singapore: Wiley.
Pain, H.J., 2017. THE PHYSICS OF VIBRATIONS AND WAVES Sixth Edition. John Wiley &
Sons Ltd.
Sone, Y., 2012. Kinetic theory and fluid dynamics. Springer Science & Business Media.
1 out of 8
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]