MECHANICAL ENGINEERING2 Fundamental Problem 4.23 - Enhanced - with Hints and Feedback The coordinate of point 0, ( x0,y0,z0) = (0,0,0) ft The coordinate of point A, ( xA, yA,ZA) = ( -2,2.3.5) ft The coordinate of B, ( xB,yB,zB) = ( 1.5, -2,0) ft The unit vector eoA is eoA =(xA−x0)i+¿¿ eoA=(−2−0)i+¿¿ eoA=−2i+2j+3.5k √20.25 eoA=1.5i−2j+ok 4.5 eoA= -0.444i+0.444j+0.777k The unit vector eoB is eoB =(xA−x0)i+¿¿ eoB=(1.5−0)i+¿¿ eoB=1.5i−2j+ok √6.25 eoB=1.5i−2j+ok 2.5 eoB= 0.6i-0.8j The momemnt vector ( Mc)1 is (Mc)1= -0.444i+0.444j+0.777k The magnitude (Mc)1=540 (-0.444i+0.444j+0.777k )
MECHANICAL ENGINEERING3 The magnitude(Mc)1= -239.7i + 239.7j+ 419.58k. Moment vector(Mc)2 is = 300 (0.6i-0.8j) = 180i -240j ( lb. ft) Moment vector (Mc)3 is (Mc)3 = - (Mc)3k (Mc)3 =-300k (lb.ft) The negative sign is because of which the ( Mc) 3 acting in negative z direction The resultant coule moment acting on pipe is (Mc)R= ( Mc)1+(Mc)2+ ( Mc) 3 ( Mc)R = (-239.7i + 239.7j+ 419.58k) + (180i -240j)-300k ( Mc)R = (59.7i-0.3j+119.58k ) l.b ft Fundamental Problem 4.40 Part A From the diagram below
MECHANICAL ENGINEERING4 Obtain the resultant force FR={150lb ft×6ft}+{1 2×50lb ft×6ft}+600lb FR= 1650 lb Part B From the Varignon´s theorem , we can obtain the location of the resultant force from point A FR (d)={150lb ft×6ft}(3ft)+{1 2×50lb ft×6ft}(2 3×6ft)+(600lb)(9ft) FR(d) =8700 lb-ft d=8700 FR=8700 1650 d= 5.27 Fundamental Problem 4.3 Calculate the distance between the point of application of the force and point o r= 4+( 3 cos 450-1) r= (4+1.121)ft r= 5.121 ft Obtain the moment of force about point O Mo= Fr Mo= 670×5.121
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MECHANICAL ENGINEERING5 Mo= 3431.07 lb . ft Mo= 3.43 kip.ft Fundamental Problem 4.29 Part A (FR)0 = F1+F2 =¿ =(−280i+180j−230k) =(−280,180,230k) Part B (Mo) R = M1+M2 M1 = F1×roe M1=|ijk 1.521 −280180220| = i(440-180-j( -330+280) + k(-270 +560) = ( 260i +50j+290k ) M2 =|ijk 021 00−450|= -900i (Mo)R= ( 260i +50j+290k ) -900i (Mo)R = -640i +50j+290k (Mo)R = (-640, 50, 290) Fundamental Problem 4.25
MECHANICAL ENGINEERING6 FRx = 230-110(3 5¿=164lb FRy= 170-110¿)= 82 lb Part A FR=√¿¿ FR=√¿¿ FR= 183.357 lb Part B Tanθ=FRy FRx θ=tan−1(FRy FRx) θ=tan−1(82 164) θ=26.5600 Part C ∑MA ∑MA= 110(3 5¿(4)−110(4 5)(6)+170(3) ∑MA= 246lb.ft Fundamental Problem 4.37 Part B RA+RB = ( 6×4.5)+( 9×9)+(3×4.5) RA+RB= 121.5 =∑F
MECHANICAL ENGINEERING7 ∑M=0;∑F×d=27×0+81×6.75+13.5×13.5 ∑F×d=729 d=729 121.5=6 The distance between the A and resultant line of action d=6-2.25 d= 3.75 m Fundamental Problem 4.33 ∑Fx=0 Rx+F2 (4 5¿= 0 Rx+16 (4 5¿=0 Rx= -12.8 kN Apply equilibrium condition for forces along y direction ∑Fy=0 Ry+R2(3 5)=F1 Ry+16(3 5)=20 Ry= 10.4 kN Calculate the magnitude of resultant force R¿√Rx2+Ry2 R¿√(−12.8)2+10.42 R=16.49 Part B
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MECHANICAL ENGINEERING8 θ=tan−1 (Ry Rx) θ=tan−1 (10.4 −12.8) θ=−0.8125 θ=−39.093 θ=180−39.093 θ=140.91 Part C Apply the equilibrium condition for moments about point A. ∑MA=0 F2(3 5)(6)+R¿ 16×(3 5)(6)+16.49¿ 9.6+10.397d- 25.6-40=0 10.39d= 16 d= 1.539 Fundamental Problem 4.31 ∑F∝=0 ∑❑Fy=?
MECHANICAL ENGINEERING9 R=√¿¿ R=√¿¿ R=∑Fy R=600+300+600 R= 1500lb Reference Kosteski, L., Iturrioz, I., Batista, R.G. and Cisilino, A.P., 2011. The truss‐like discrete element method in fracture and damage mechanics.Engineering Computations. Mazurek, A., 2012. Geometrical aspects of optimum truss like structures for three-force problem.Structural and Multidisciplinary Optimization,45(1), pp.21-32. Morterolle, S., Maurin, B., Quirant, J. and Dupuy, C., 2012. Numerical form-finding of geotensoid tension truss for mesh reflector.Acta Astronautica,76, pp.154-163. Yang, Y., Moen, C.D. and Guest, J.K., 2015. Three-dimensional force flow paths and reinforcement design in concrete via stress-dependent truss-continuum topology optimization.Journal of Engineering Mechanics,141(1), p.04014106.