This document provides solutions for various questions related to Fundamentals of Mathematical Mode. It includes topics such as cooling time, simple pendulum, cake optimization, speed hump modeling, steady state conduction and convection, heat transfer, thermal resistance, and more.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
FUNDAMENTALSOFMATHEMATICALMODE Solutions Question 1 Time taken, in seconds. for the water in the cup to cool to a drinkable temperature of 46 °C T1−T3=(T2−T3)e−yty=UvalueA mc= 9.49W m2K×0.004m2 0.3kg×4150J kgK =3.048996×10−5T1=46,T2=87T3=25 ∴46−25=(87−25)e−−3.048996×10−5t t= ln(46−25 46−25) −3.048996×10−5=35507.1619s¿35507.162s Question 2 Modelling a simple pendulum, investigating the relationship between period and length of a simple pendulum. mass,m=2.12,L=1.06m,g=9.81ms−2,π=3.142T=2π√L g=2π√1.06m 9.81ms−2=2.065372s ∴T=2.065s Question 3 Optimizing of the cake
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
A=2πrh+2πr2V=πr2h⟹h=V πr2=3894 πr2A(r)=2πr(3894 πr2)+2πr2 d dr(A(r))=d dr(7788 r+2πr2 )=4πr−7788 r2 d dr(A(r))=0⟹4πr−7788 r2=0 4πr=7788 r2⟹r3=7788 4πr=8.525869∴h=h=V πr2=3894 π×8.5258692=17.0517cmh=17.052cm Question 4 Speed hump modelling Case 1: Leaving the first hump vehicle accelerates up to maximum allowed velocity s1=vot1+1 2a1t1 2v0=2.88m s,v1=40km hr=100 9 m s,a1=1.84m s2vi=v0+a1t1⟹t1=v1−v0 a1 t1= 100 9−2.88 1.84=926 207s=4.47343s∴s1=vot1+1 2a1t1 2=s1=2.88(926 207)+1 2×1.84×(926 207) 2 ¿31.29412775m Case 2: After reaching maximum velocity, vehicle decelerates back s2=v1t2+1 2a2t2 2 t2=v0−v1 a2 = 2.88−100 9 −6.69=1.2303604 s2=100 9(1.23036)+1 2×(−6.69)×(1.23036)2=8.607054m Totaldistance,S=s1+s2=31.29412775+8.607054=39.901182¿39.901m Question 5 The steady state conduction and convection model.
l=0.13,k=0.6W mC,T1=22.94℃,T2=31.22℃h0=10W m2C,hi=150W m2C Hrate=T2−T1 l k+1 h0 +1 hi ¿31.22−22.94 0.13 0.6+1 10+1 150 =25.608247¿25.608W/m2 Question 6 A=heattransferareaofthesurface(m2) hc=convectiveheattransfercoefficientoftheprocess(W/(m2°C)) Ts=Temperaturesurface Ta=TemperatureairW=hcA(Ts−Ta)934=8.59×36.55(TS−0)Ts=934 36.55×8.59=2.974858℃ ¿2.975℃ Question 7 Window dimensions and made A=0.95×2.04=1.938m2 Thickness,d=0.01448m,k=0.81W m℃,∆T=32−24=8℃Q=kA∆T d ¿0.81×1.938×8 0.01448=867.2818W¿867.282W Question 8 Heat transfer per unit length for a uniform circular pipe