Assignment on Polynomial Interpolation and Bisection Method Solutions
VerifiedAdded on 2023/06/03
|2
|692
|377
Homework Assignment
AI Summary
This document provides solutions to a math assignment. The first part addresses polynomial interpolation, including finding linear, quadratic, and cubic interpolation polynomials using provided nodes. The second part focuses on using given centers and coefficients to find Newton polynomials and...

Ans 1.
(a)
y= y0+ ( y1− y0 ) x−x0
x1−x0
y=−1+ 1∗x+1
1 y=−1+ x +1=x y=x
(b)
f ( x )=f ( x2 ) + ( x −x2 ) ( f ( x3 )−f ( x1 ) )
2∗∆ x + ( x−x2 )2
[ f ( x1 )−2∗f ( x2 ) +f ( x3 ) ]
2∗∆ x2
f ( x ) =0+ ( x −0 ) ( 1+1 )
2 + x2 [ −1−0+1 ]
2 f ( x ) =x
(c)
Let ,f ( x )=a∗x3 +b∗x2+c∗x +d So ,−1=−a+b−c +d0=d1=a+b+ c+d 32=8 a+4 b+2 c+ d
−1=−a+b−c1=a+b+ c Adding we get ,0=−a+ b−c+ a+b+ c=2∗b¿ , b=0So , we get
−1=−a−c 32=8∗a+2∗cSo ,−8=−8 a−8 c Adding the previous two equations we get ,
32−8=8 a+2 c−8 a−8 c24=−6 c c=−4So ,1=a+0−4 +0a=5 So , we get theequation as
f ( x )=5∗x3−4∗x
(d)
y= y0+ ( y1− y0 ) x−x0
x1−x0
¿ , y=1+ ( 32−1 ) ( x−1 )
1 y=1+31 x−31 y=31 x−30
(e)
f ( x )=f ( x2 ) + ( x −x2 ) ( f ( x3 )−f ( x1 ) )
2∗∆ x + ( x−x2 )2
[ f ( x1 )−2∗f ( x2 ) +f ( x3 ) ]
2∗∆ x2
f ( x ) =1+ ( x−1 ) ( 32−1 )
2 + ( x−1 ) 2 [ 0−2∗1+32 ]
2 f ( x ) =1+ 31∗ ( x −1 )
2 + ( x−1 ) 2 30
2
f ( x ) =1+ 31∗ ( x −1 )
2 +15∗( x−1 ) 2
Ans 2.
P1 ( x ) =a0 +a1 ( x−x0 ) P1 ( x ) =−2+0.4 ( x−2 ) P1 ( x ) =−2+0.4 x−0.8 P1 ( x ) =−2.8+0.4 x
So , at x=2.7P1 ( x ) =−2.8+1.08=−1.72
(a)
y= y0+ ( y1− y0 ) x−x0
x1−x0
y=−1+ 1∗x+1
1 y=−1+ x +1=x y=x
(b)
f ( x )=f ( x2 ) + ( x −x2 ) ( f ( x3 )−f ( x1 ) )
2∗∆ x + ( x−x2 )2
[ f ( x1 )−2∗f ( x2 ) +f ( x3 ) ]
2∗∆ x2
f ( x ) =0+ ( x −0 ) ( 1+1 )
2 + x2 [ −1−0+1 ]
2 f ( x ) =x
(c)
Let ,f ( x )=a∗x3 +b∗x2+c∗x +d So ,−1=−a+b−c +d0=d1=a+b+ c+d 32=8 a+4 b+2 c+ d
−1=−a+b−c1=a+b+ c Adding we get ,0=−a+ b−c+ a+b+ c=2∗b¿ , b=0So , we get
−1=−a−c 32=8∗a+2∗cSo ,−8=−8 a−8 c Adding the previous two equations we get ,
32−8=8 a+2 c−8 a−8 c24=−6 c c=−4So ,1=a+0−4 +0a=5 So , we get theequation as
f ( x )=5∗x3−4∗x
(d)
y= y0+ ( y1− y0 ) x−x0
x1−x0
¿ , y=1+ ( 32−1 ) ( x−1 )
1 y=1+31 x−31 y=31 x−30
(e)
f ( x )=f ( x2 ) + ( x −x2 ) ( f ( x3 )−f ( x1 ) )
2∗∆ x + ( x−x2 )2
[ f ( x1 )−2∗f ( x2 ) +f ( x3 ) ]
2∗∆ x2
f ( x ) =1+ ( x−1 ) ( 32−1 )
2 + ( x−1 ) 2 [ 0−2∗1+32 ]
2 f ( x ) =1+ 31∗ ( x −1 )
2 + ( x−1 ) 2 30
2
f ( x ) =1+ 31∗ ( x −1 )
2 +15∗( x−1 ) 2
Ans 2.
P1 ( x ) =a0 +a1 ( x−x0 ) P1 ( x ) =−2+0.4 ( x−2 ) P1 ( x ) =−2+0.4 x−0.8 P1 ( x ) =−2.8+0.4 x
So , at x=2.7P1 ( x ) =−2.8+1.08=−1.72
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

P2 ( x ) =a0 +a1 ( x−x0 ) + a2 ( x −x0 ) ( x−x1 )¿−2+0.4∗( x−2 ) +1.5∗( x−2 ) ( x−3 )
¿−2+0.4 x−0.8+1.5∗x2−7.5∗x+ 9¿ 1.5∗x2 −7.1∗x−6.2 So , at x=2.7 we have ,
P2 ( x ) =1.0935−−19.17−6.2¿−24.2765
P3 ( x ) =a0 + a1 ( x−x0 ) + a2 ( x−x0 ) ( x −x1 ) +a3 ( x −x0 ) ( x− x1 ) ( x−x2 )
P3 ( x ) =−2+0.4∗( x−2 ) +1.5∗( x−2 ) ( x−3 )−0.4∗( x−2 ) ( x−3 ) ( x−5 )
¿−2+0.4 x−0.8+ 1.5∗x2−7.5∗x+9−0.4∗x3 +3.6∗x2−10.4∗x−9.6
¿−0.4∗x3+ 5.1∗x2−17.5∗x−3.4
So , at x=2.7 ; P3 ( x ) =−7.8732+37.179−47.25−3.4=−21.3442
P4 ( x ) =a0 +a1 ( x−x0 ) +a2 ( x−x0 ) ( x−x1 ) +a3 ( x−x0 ) ( x−x1 ) ( x−x2 ) +a4 ( x−x0 ) ( x−x1 ) ( x−x2 ) ( x−x3 )
¿−0.4∗x3+ 5.1∗x2−17.5∗x−3.4+0.0005∗( x3−9∗x2+26∗x−24 ) ( x−5 )
¿−0.4∗x3+5.1∗x2−17.5∗x−3.4+0.0005∗x4−0.007∗x3 +0.0225∗x2+ 0.001∗x−0.005
¿ 0.0005∗x4−0.407∗x3 +5.1225∗x2−17.499∗x−3.405 isthe required equation
Therefore at x=2.7 we get ,
P4 ( x )=0.02657−8.01098+37.34303−47.1123−3.405=−21.15868
Ans3.
a b f(a) f(b) c=(a+b)/2 f(c) Update new b-a
1 2 -4 -1 1.5 -2.75 c=a=1.5 0.5
1.5 2 -2.75 -1 1.75 -1.9375 c=a=1.75 0.25
1.75 2 -1.9375 -1 1.875 -1.48438 c=a=1.875 0.125
1.875 2 -1.48438 -1 1.9375 -1.2461 c=a=1.9375 0.0625
1.9375 2 -1.2461 -1 1.96875 -1.124 c=a=1.96875 0.03125
1.96875 2 -1.124 -1 1.98438 -1.062 c=a=1.98438 0.01562
1.98438 2 -1.06224 -1 1.99219 -1.03118 c=a=1.99219 0.00781
¿−2+0.4 x−0.8+1.5∗x2−7.5∗x+ 9¿ 1.5∗x2 −7.1∗x−6.2 So , at x=2.7 we have ,
P2 ( x ) =1.0935−−19.17−6.2¿−24.2765
P3 ( x ) =a0 + a1 ( x−x0 ) + a2 ( x−x0 ) ( x −x1 ) +a3 ( x −x0 ) ( x− x1 ) ( x−x2 )
P3 ( x ) =−2+0.4∗( x−2 ) +1.5∗( x−2 ) ( x−3 )−0.4∗( x−2 ) ( x−3 ) ( x−5 )
¿−2+0.4 x−0.8+ 1.5∗x2−7.5∗x+9−0.4∗x3 +3.6∗x2−10.4∗x−9.6
¿−0.4∗x3+ 5.1∗x2−17.5∗x−3.4
So , at x=2.7 ; P3 ( x ) =−7.8732+37.179−47.25−3.4=−21.3442
P4 ( x ) =a0 +a1 ( x−x0 ) +a2 ( x−x0 ) ( x−x1 ) +a3 ( x−x0 ) ( x−x1 ) ( x−x2 ) +a4 ( x−x0 ) ( x−x1 ) ( x−x2 ) ( x−x3 )
¿−0.4∗x3+ 5.1∗x2−17.5∗x−3.4+0.0005∗( x3−9∗x2+26∗x−24 ) ( x−5 )
¿−0.4∗x3+5.1∗x2−17.5∗x−3.4+0.0005∗x4−0.007∗x3 +0.0225∗x2+ 0.001∗x−0.005
¿ 0.0005∗x4−0.407∗x3 +5.1225∗x2−17.499∗x−3.405 isthe required equation
Therefore at x=2.7 we get ,
P4 ( x )=0.02657−8.01098+37.34303−47.1123−3.405=−21.15868
Ans3.
a b f(a) f(b) c=(a+b)/2 f(c) Update new b-a
1 2 -4 -1 1.5 -2.75 c=a=1.5 0.5
1.5 2 -2.75 -1 1.75 -1.9375 c=a=1.75 0.25
1.75 2 -1.9375 -1 1.875 -1.48438 c=a=1.875 0.125
1.875 2 -1.48438 -1 1.9375 -1.2461 c=a=1.9375 0.0625
1.9375 2 -1.2461 -1 1.96875 -1.124 c=a=1.96875 0.03125
1.96875 2 -1.124 -1 1.98438 -1.062 c=a=1.98438 0.01562
1.98438 2 -1.06224 -1 1.99219 -1.03118 c=a=1.99219 0.00781
1 out of 2
Related Documents

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
© 2024 | Zucol Services PVT LTD | All rights reserved.