Inverse Functions and Logarithmic Functions - Desklib

Verified

Added on  2023/06/10

|9
|1540
|310
AI Summary
This article covers topics on inverse functions and logarithmic functions. It explains how to find the inverse of a function, use composition to prove whether functions are inverses, and solve equations using logarithmic properties. Solved examples are provided for better understanding.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
INVERSE FUNCTIONS
Inverse of the graph ( y=10x ¿
If a function f ( x ) is mapping x ¿ y , thenthe inverse function of f ( x ) maps y back ¿ x
f ( x )=10x ,interchan ging the variables x y , we have :
x=10 y
Thus we solve for y .
Given that f ( x ) =g ( x ) , then ln f ( x ) =ln g ( x )
ln x=ln 10 y
Since log a xb =blog a x
ln 10 y= yln10
ln x= yln 10
y= ln x
ln10
Thus the inverse of y=10x is y= ln x
ln 10 .
Hence we graph y= ln x
ln 10
To graph the inverse function, we determine (x,y) points.

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
f1 ( x ) if f ( x ) =4 x +9
If a function f ( x ) is mapping x ¿ y , thenthe inverse function of f ( x ) maps y back ¿ x
y=4 x +9
x=4 y +9
4 y +9= x
4 y +99=x9
4 y=x9
4 y
4 = x
4 =9
4
y=x9
4
f1 ( x ) =x9
4
Inverse of f ( x ) = ( x +1 ) 23
Simplifying f ( x ) = ( x+1 )2 3
f ( x )=x2 +2 x2
If a function f ( x ) is mapping x ¿ y , thenthe inverse function of f ( x ) maps y back ¿ x
x= y2 +2 y2
y2 +2 y2=x Subtracting x ¿ both sides , we have :
y2 +2 y2x=x x
y2 +2 y2=0
Using quadratic formula with a=1 , b=2, c=2x
y= x +31
y= x +31
Thus Inverse of f ( x ) = ( x +1 ) 23 is : y= x+ 31 y= x+ 31
Inverse of f ( x )=ln2 x
Document Page
If a function f ( x ) is mapping x ¿ y , thenthe inverse function of f ( x ) maps y back ¿ x
y=ln 2 x
x=ln 2 y applying logarithmrule : a=log b ¿
x=ln ex
ln (ex ¿)=ln ( 2 y ) Given the logshave the same base : logb f ( x ) =log g b ( x ) ¿
Implying that f ( x ) =g ( x )
For ln ex=ln 2 y ,
we solve ex=2 y
y= ex
2
The inverse of Inverse of f ( x ) =ln 2 x is f ( x ) =e x
2
Inverse of the funct ion4.5 ( x15 )4 +3 when x 15
Applyingbinomial theorem , we have :
( a+b )n=
i=0
n
(n
i )ani bi Where a=x , b=15

i=0
n
(n
i )ani bi=
i
4
(4
i )x4 i (15 )i
4.5 ( x15 )4 +3=4.5
i
4
(4
i ) x4i (15 )i+3
f ( x )=4.5 x4 67.524
6 x3 + 1012.524
4 x215187.524
6 x+ 227815.5
If a function f ( x ) is mapping x ¿ y , thenthe inverse function of f ( x ) maps y back ¿ x
x=4.5 y 4 67.524
6 y3 + 1012.524
4 y2 15187.524
6 y +227815.5
solving for y , we have 45 y42700 y3 +60750 y2607500 y +2278155x10=0
Document Page
y= 1
3 (45i2
1
4 3 ( x3 )
1
4 ), y= 1
3 (45+i 2
1
4 3 ( x3 )
1
4 )
Sinceboth roots are complex , Inverse of the function 4.5 ( x15 ) 4 +3 when x 15 does not exist
Use composition ¿ prove whether the followin g functions are inverses :
If f ( g ( x ) )=g ( f ( x ) ) =x , then f ( x )g ( x ) are inverse functions
f ( x )=4 x +1
g ( x ) = x 1
4
f ( g ( x ) )=4 ( x1
4 )+ 1= 4 x4
4 =x 1
Hence the functions are not inverses
Use composition ¿ prove whether the follwoing functions areinverses . If they are not , find the inverse of
f ( x)
If f ( g ( x ) )=g ( f ( x ) ) =x , then f ( x )g ( x ) are inverse functions
f ( x )= ( x +1 )34
g ( x )= ( x4 )
1
3 1
f ( g ( x ) ) = [ ( x4 )
1
3 1+1 ]
3
4= [ ( x4 )
1
3 ]
3
4
¿ x4+4=x
Thus f ( g ( x ) )=g ( f ( x ) ) =x hence the functions areinverses
Logarithmic Functions
Question 1
20=4 ( e ) x
ln 20=ln( 4 ( e ) x ¿)=ln 4+ ln ex ¿
ln 20=ln 4 +xlne
ln 20=ln 4 +x

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
8=3x+ 4
ln 8=ln( 3¿¿ x+ 4)¿
44 x=200
ln 44 x=ln200
4 xln 4=ln 200 x= ln200
4ln 4
Question 2
log5 20=x
5x=20
ln ( 100 ) =x
ex=100
2logx ( 20 )=4
logx 202=4
x4 =202
x4 =400
Question 3
Change of base formula: log b m= log a m
loga b
log3 5
log3 5= loge 5
loge 3 = ln 5
ln 3 =1.465
log6 22
log6 22= loge 22
loge 6 = ln22
ln6 =1.7251
log2 2.9
Document Page
log2 2.9= loge 2.9
loge 2 = ln 2.9
ln 2 =1.536
Question 4
Product : logb xy=logb x +logb y
Quotient : logb
x
y =logb x logb y
Power :log b x y= ylo gb x
Expand
a) log 24 ( 3 )
5
log 24 ( 3 )
5 =log 24 + log3log 5
¿ 4 log 2log3log 5
b) log 25
9
log 25
9 =log 25log 9
¿ log 52log32
¿ 2 log 52 log 3
Contract
c) 6 log3 u+6 log3 v
¿ log3 u6 + log3 v6
¿ log3 u6 v6 =log3 ( uv )6
d) ln x4 ln y
¿ ln xln y 4
¿ ln x
y4
Question 5
Convert to like bases:
Document Page
a) 42 x +3=16
42 x +3=42
2 x+3=2
2 x=1
x=1
2
b) 32 a=3a +9
2 a=a+9
3 a=9
a=3
c) 532 x =1
532 x =50
32 x=0
2 x=3
x= 3
2
Use logs and log properties to solve:
a) 3b =17
blog 3=log 17
b= log17
log 3 =2.5789
b) 4 ( 5t ) 1=15
log 4 ( 5t ) =log ( 15+1 )
log 4+tlog 5=log 16
t log 5=log 16log 4
t= log 16log 4
log5 =0.8614
c) ex1 5=5
ex1=5+5=10
ex1=10
( x1 ) ln e=ln 10
x1=ln 10
x=ln 10+1
x=3.3026
d) 6 (108 n+8 )3=23
6 ( 108n +8 )=23+3=20
108 n +8=20
6 = 10
3

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
( 8 n+8 ) log10=log 10
3
8 n+8=
log 10
3
log 10
8 n=
log 10
3
log 10 8=7.47712
n=7.47712
8 =0.9346
e) a ¿ A=P ( 1+r ) t ,
where A isthe amount the account , P isthe principleamount , r isthe interest rate¿
t is the period
b ¿ 2 p= p ( 1.02 ) t
2= ( 1.02 )t
log 2=log (1.02 )t
t= log 2
log 1.02 =35 months
¿ 2 years11 months
f) G=g ( 1.0045 )h
a ¿ Where G isthe numbe r of bacteria colonies after h hrs starting with g colonies
b ¿ 30000=8000 (1.0045 )h
log 30000=¿ log 8000+h log 1.0045 ¿
h= log30000log 8000
1.0045
¿ 294.3839 hours
Exceeding
a) y=33+ 104 eert , when t=2 , y =120
120=33+104 e2 r
12033=104 e2 r
87=104 e2 r
log 87=log 104+2 r
2 r=0.077514086
r =0.038757
Thus the rate of reduction is 0.038757 Degrees per minute
b) 80=33+104 e0.038757 t
log 47=log 104±0.038757 t
0.038757 t=0.344935481
t=8.89995 9
Document Page
Thuswill take 9 minutes
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]