LINEAR ALGEBRA 1 Linear Algebra Name Institution

Verified

Added on  2023/04/23

|18
|3244
|167
AI Summary
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Running head: LINEAR ALGEBRA 1
Linear Algebra
Name
Institution
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
LINEAR ALGEBRA 2
Linear Algebra 1
Question 1
Question 2.
Part a.
~c can be written in terms of ~
d, ~e and ~
f as follows,
~c =
~
f + ~e~d
Part b.
~g can be written in terms of ~c, ~
d, ~e and ~
k as follows,
~g= ~
k + ~c+ ~
d ~e
Part c.
~x can be found by solving the equation below,
~x + ~b= ~
f
From figure 2, ~
f is represented by the equation ~
f = ~a+ ~b.
~
f = ~a+ ~b
~
f = ~x + ~b
Therefore,
Document Page
LINEAR ALGEBRA 3
~x + ~
b=¿ ~a+ ~
b
~x= ~a+ ~
b ~
b
Hence,
~x= ~a
Part d
~x can be found by solving the equation below,
~x + ~
h=¿ ~
d ~e
~
h=¿ ~
d ~e ~x
From figure 2, ~
h is represented by the equation ~
h=¿ ~
d ~e ~g
Therefore,
~
h=¿ ~
d ~e ~x
~
h=¿ ~
d ~e ~g
~
d ~e ~x= ~
d ~e ~g
~x= ~g
Hence.
~x= ~g
Part e.
~x can be found by solving the equation below,
~x= ~e~a ~
b ~
d ~
k
Making ~
b the subject of the formula, ~
b= ~e ~a ~
d ~
k ~x
From figure 2, ~
b is represented by the equation,
~
b= ~a+ ~e ~
d ~c
Document Page
LINEAR ALGEBRA 4
Therefore,
~a+ ~e ~
d ~c= ~e ~a ~
d ~
k ~x
~c =
~
k ~x
From figure 2, ~c is represented by the equation,
~c =
~
k ~
h
hence,
~
k ~x= ~
k ~
h
~x= ~
h
~x= ~
h
Question 3.
Part a.
For the function ~a= ~
i+2 ~
j ~
k
||~a||= 12+22 +12
||~a||= 6
Part b.
The unit vector withthe same direction as ~a is given by : ~a
||~a ||
¿
~
i+2 ~
j ~
k
6
¿ 1
6
~
i+ 2
6
~
j 1
6
~
k
Part c
The vector will be given by multiplying the unit vector by 5
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
LINEAR ALGEBRA 5
¿ 5 ( 1
6
~i+ 2
6
~j 1
6
~k )= 5
6
~i+ 10
6
~j 5
6
~k
Part d
The opposite direction for a vector ~a= ~
i+2 ~
j ~
k is given as ~a
The unit vector withthe same direction as ~a is 1
6
~i+ 2
6
~j 1
6
~k
The unit vector withopposite direction as ~a is( 1
6
~i + 2
6
~j 1
6
~k )
The vector of length 2opposite direction=2 ( 1
6
~i+ 2
6
~j 1
6
~k )
¿ 2
6
~i 4
6
~j+ 2
6
~k
Question 4
Part a
Considering the points P= (1,0,2 ) and Q= (1,2,5 )
i. OP= ~
i+0 ~
j+ 2 ~
k= ~
i+2 ~
k
OQ= ~
i+ 2 ~
j+5 ~
k
ii. To find PQ, subtract OPfrom OQ
PQ = OQ OP
PQ = (11,20,52 ) = (2,2,3 )
PQ = (2,2,3 )
¿2 ~i+2 ~j+3 ~
k
iii. ¿ PQ= (22 ) + ( 22 )+ ( 32 )= 17=4.1231
Part b
The value of t can be calculated from the two points R= ( 2, t ,3 ) and S= ( 1,1, 11 ) as follows;
First we find RS, given by,
RS= ( 12,1t , 113 )
Document Page
LINEAR ALGEBRA 6
RS= (1 ,1t , 8 )
d ( RS ) =9
Hence the distance 9 is given by finding the magnitude,
9= (12 ) + ( 1t )2+ ( 82 )
92 =1+ ( 1t )2+ 64
81164= ( 1t ) 2
16= ( 1t )2
16=1 ( 1t ) t ( 1t )
t22 t15=0
Solving the quadratic equation by the use of quadratic formula,
b ± b24 ac
2a
a=1 , b=2 , c=15
2± 22 + ( 60 )
2
2± 8
2
Hence t=3t=5
Part c
the distance from the starting point can be calculated by the use of vectors,
let ~arepresent a vector direction through which the crawl travelled
hence ~a= ( 4 ~i12 ~j+3 ~k ) in component notation
~a= ( 4 ,12 , 3 )
Document Page
LINEAR ALGEBRA 7
Distance is given by the magnitude of ~a
||~a||= 42±122+ 32= 169=13
Therefore, the distance from the starting point is 13 cm.
Part d
Whent=1 , r ( t ) =3 ~
i +12 ~
j3 ( 1 ) ~
k=3 ~
i+ ~
j3 ~
k
When t=3 , r ( t ) =3 ~
i+32 ~
j 3 ( 3 ) ~
k=3 ~
i+9 ~
j9 ~
k
Displacement= ( 3 ~
i+9 ~
j9 ~
k ) ( 3 ~
i+ ~
j3 ~
k )=8 ~
j6 ~
k
scalar displacement = 82 +(6)2=10
Question 5
Part a
P= (1,2,1 ) , Q= ( 3 , 3 , 6 )R (3 , 0 ,9 )
PQ =QP= (31 , 32 , 61 )= ( 2 ,1 , 5 )
QR =RQ= (33 , 03 ,96 )= (6 ,3 ,15 )
PR=RP= (31 , 02 ,91 )= (4 ,2,10 )
Part b
The three points are collinear since:
QR =3 PQ PR=2 PQ
Question 6
Part a
For the following points in space
P= (1,2,1 ) , Q= ( 3 , 3 , 4 ) , R ( 4 ,3 , 5 ) and S ( 2 ,2 , 2 )
The direction PQ , QR , , SR PS are given as follows;
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
LINEAR ALGEBRA 8
PQ =QP= (31 , 32 , 41 )= (2 , 1 ,3 )
QR =RQ= ( 43 , 33 , 54 )= ( 1 , 0 ,1 )
SR=RS= ( 42 , 32 , 52 ) = ( 2 ,1 , 3 )
PS=SP= ( 21 , 22 , 21 ) = ( 1 , 0 , 1 )
Part b
The quadrilateral is a parallelogram since two opposite sides are equal as we can see from the
vectors calculated above.
Part c
PQ =QP= (31 , 32 , 41 )= (2 , 1 ,3 )
QS=SQ= ( 23 , 23 , 24 )= (1 ,1 ,2 ) ,
1
2 QS= 1
2 ( 1 ,1 ,2 ) = ( 1
2 , 1
2 ,1 )
PM = PQ+ 1
2 QS
PM = ( 2 ,1 , 3 ) +(1
2 , 1
2 ,1 )= (2 1
2 ,1 1
2 ,31)=( 3
2 , 1
2 , 2 )
Part d.
To the direction of PN can be determined using the routes,
PN = PS+ 1
2 SQ and PN = PQ+ 1
2 QS
PS=SP= ( 21 , 22 , 21 ) = ( 1 , 0 , 1 )
1
2 SQ=1
2 ( QS ) =1
2 ( 32 , 32 , 42 ) =1
2 ( 1 , 1 ,2 ) =( 1
2 , 1
2 , 1 )
PN = PS+ 1
2 SQ
Document Page
LINEAR ALGEBRA 9
PN = ( 1 ,0 , 1 ) +( 1
2 , 1
2 , 1 )=(1+ 1
2 ,0+ 1
2 ,1+1 )= (3
2 , 1
2 ,2 )
The mid points M=N this is because
PS+ 1
2 SQ= PQ + 1
2 QS= (3
2 , 1
2 ,2 )
Since PM = PN then M=N.
Question 7
x , y R3 having ||~x + ~y||=||~x||+||~y || cab be proved as a false statement as follows
Let ~x be (1 , 0 ,2 ) and ~y be (2 , 1 ,3 )
Therefore ~x + ~y= (1, 0 ,2 )+( 2 , 1, 3 ) = ( 21 ,1+ 0 ,32 ) = ( 1 , 1, 1 )
||~x + ~y||= 12+12+12= 3=1.7321
||~x||= 12+02 +22= 5=2.2361
||~y||= 22 +12+32= 15=3.8730
Hence ||~x||+||~y||=2.2361+3.8730=6.1091
From the above analysis, ||~x + ~y|| ||~x||+||~y||
This justifies that the statement is false
LINEAR ALGEBRA 2
QUESTION 1
Part a
~u . ~v =¿ ||u||.||v||. cos θ
¿ 2 ×3 ×cos ( π
3 )=6 × 0.5=3
Part b
Document Page
LINEAR ALGEBRA 10
Since ~u . ~v =¿ ||u||.||v ||. cos θ
||v||= ~u . ~v
||u||. cos θ
Since ~u=3 ~u . ~v =¿ 6, having given θ= π
4
||v||= 6
3 cos ( π
4 )=2.8293
Part c
When ~u . ~v =0 , this indicates that
cos θ=0 ,
Therefore, θ=cos1 0=90 °
θ=90 °= π
2
Part d
When ~u . ~v =6 ,||v||=3||u||=2 , θwould be calculated as;
Making cos θ the subject of the formular
~u . ~v
||u||.||v|| =¿ cos θ
Substituting 6
2× 3 =¿ cos θ
cos θ=1
θ=cos1 0=0 °=π
Question 2
Part a
~a= ~
i2 ~
j
~
b=3 ~
i+6 ~
j
~a . ~
b= ( ~i2 ~j ) .(3 ~i+6 ~j)
¿ ( 1 ×3 ) + (2 ×6 )=9
Part b
~a=3 ~
i5 ~
j+4 ~
k
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
LINEAR ALGEBRA 11
~
b= ~i+ ~j+2 ~
k
~a . ~
b=(3 ~
i5 ~
j+4 ~
k).( ~
i+ ~
j +2 ~
k )
~a . ~
b= ( 3 ×1 ) + (5 ×1 ) + ( 4 ×2 ) =6
Part c
~a= ~
i ~
j+2 ~
k
~
b= ~
i ~
j ~
k
~a . ~
b= ( ~
i ~
j+ 2 ~
k ) .( ~
i ~
j
~
k )
~a . ~
b= ( 1× 1 ) + ( 1×1 ) + ( 2×1 ) =0
Question 3
Part a
~a= ~
i2 ~
j
||~a||= 12+22 = 5=2.2361
||~a||=2.2361
~
b=3 ~i+6 ~j
||~
b||= 32+62= 25=5
~a . ~
b=¿ ||~a||. ||~
b||. cos θ
From question above part a, ~a . ~
b=9
Substituting each component to the formula,
9=¿ 2.2239 ×5 cos θ
cos θ=¿ 9
11.1195 =0.8094 ¿
θ=cos10.8094=144.04 °
Part b
~a= ( 3 ,5 , 4 )
||~a||= 32+52 + 42 = 50=7.0711
||~a||=7.0711
~
b= ( 1 ,1 , 2 )
Document Page
LINEAR ALGEBRA 12
||~b||= 12 +12 +22= 6=2.4495
||~
b||=2.4495
~a . ~
b=¿ ||~a||. ||~
b||. cos θ
From question above part b, ~a . ~
b=6
Substituting each component to the formula,
6=¿ 7.0711× 2.4495 cos θ
cos θ=¿ 6
17.3207 =0.3464 ¿
θ=cos1 0.3464=69.73 °
Part c
~a= ( 1 ,1 , 2 )
||~a||= 12+12 +22= 6=2.4495
||~a||=2.4495
~
b= ( 1 ,1 ,1 )
||~
b||= 12 +12 +12= 3=1.7321
||~b||=1.7321
~a . ~
b=¿ ||~a||. ||~b||. cos θ
From question above part c, ~a . ~
b=0
Substituting each component to the formula,
0=¿ 2.4495 ×1.7321 cos θ
cos θ=¿ 0
4.2428 =0 ¿
θ=cos1 0=90 °
Question 4
Part a
Finding ~u . ( 3 ~v +5 ~w ) if ~u . ~v =4 ~u . ~w=2
Document Page
LINEAR ALGEBRA 13
~u . ( 3 ~v +5 ~w )=3 ( ~u . ~v ) +5 ( ~u .~w )
¿ 3 ( 4 ) +5 (2 )=2
Part b
~u . ( a ~v +2 ~w ) =4, ~u . ~v =2, and ~u . ~w=3
~u . ( a ~v +2 ~w )=a ( ~u . ~v ) +2 ( ~u . ~w )
¿ a ( 2 ) +2 (3 )=2a6=4
a= 4+ 6
2 =5
Part c
Finding ~u . ( 4 ~v +6 ~w ) if ~u . ~v =3 ~uis perpendicular to ~w
For a non-zero vectors ~uand ~w to be perpendicular to each
~u . ~w=0
~u . ( 4 ~v +6 ~w )=4 ( ~u . ~v )+ 6 ( ~u . ~w )
¿ 4 ( 3 ) +6 ( 0 ) =12
Part c
~u . ( 5 ~u3 ~v ) if ~u . ~v =7and ~u as a length of 2
~u . ( 5 ~u3 ~v )=5 ( ~u . ~u )3 ( ~u . ~v )
¿ 5 ( 2× 2 )3 ( 7 )=1
Part e
finding out ~a . ( ~
b + ~
b ) given that ~
b =2 ~a
length of ¿|~a|¿ 5
implying that ¿|~a|¿ 52
simplify a2=52
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
LINEAR ALGEBRA 14
~a=5
~
b =2 ~a
~
b meaning its perpendicular to ~a
Therefore ~
b . ~a=0
~b =0
~a
Substituting 0
~a and 10 to the function
~a . ( ~b + ~b )= ~a× ( 0
~a +2 ~a )=2 a2 =50
Question 5
Part a
Document Page
LINEAR ALGEBRA 15
Part b
~
b¿ ¿
~
b × ~a
~a × ~a ~a
From part a above,
~
b=4 ~i+3 ~j
~a=4 ~
i2 ~
j
~
b . ~a= ( 4 ,3 ) × ( 4 ,2 )= ( 4 × 4 )+ (3 ×2 )=10
~
b . ~a=10
~a . ~a= ( 4 ,2 ) × ( 4 ,2 )= ( 4 × 4 ) + (2 ×2 )=20
~a . ~a=20
Hence
~
b = 10
20 ( 4 ,2 )= ( 2 ,1 )
~
b = ( 2 ,1 )
The function is drawn on the graph in part a.
Part c
Calculating the vector
~
b =
~
b ~
b
~
b=4 ~
i+3 ~
j
~
i=4 ~
j=3
~
b= ( 4 , 3 ) and ~
b = ( 2 ,1 )
Therefore
~
b ~
b = ( 4 ,3 ) ( 2 ,1 ) = ( 42 , 3+1 )= ( 2 , 4 )
Document Page
LINEAR ALGEBRA 16
~
b = ( 2 , 4 ) and ~a= ( 4 ,2 )
Verifying that, ~
b and ~a are perpendicular
~
b . ~a=0 implying that
( 2 , 4 ) × ( 4 ,2 )= ( 4 ×2 ) + (2× 4 )=0
Hence this proves that ~
b and ~a are perpendicular.
Question 6
Part a
~a=4 ~
i ~
j+ ~
k , ~
b=2 ~
i ~
j2 ~
k
we take ~
b¿¿= 1
2
~i+ 1
4
~j 1
2
~
k ~
b¿=3
2
~i 5
4
~j 1
2
~
k ¿
Part b
~
b =λ ~a
In the above case λ is the Scalar constant that gives the multiplication ratios.
λ< 0 this implies the scalar is a negative value which is less than zero implying that its
multiplication will switch the direction of the vector point in an opposite direction making it gain
a stretch or shrink on the magnitude of the vector. This depends on the size of the constant.
Question 7
Part a
For the quadrilateral ABCD with vertices A= (1 ,2 , 3 ), B= ( 0 , 4 , 1 ) , C= ( 3 , 4 ,1 ) and
d= ( 2, 2 , 3 )
About the origin O= ( 0 ,0 , 0 )
OA = AO= ( 10,20 , 30 ) = ( 1 , 2 ,3 )
OA = (1 , 2, 3 )
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
LINEAR ALGEBRA 17
OB =BO= ( 00,40 , 10 )= ( 0 , 4 ,1 )
OB = ( 0 , 4 , 1 )
OC=CO= (30,40 , 10 )= ( 3 , 4 ,1 )
OC= ( 3 , 4 ,1 )
OD=DO= ( 20,20 ,30 ) = ( 2 ,2 , 3 )
Part b
Finding AC and BD
AC= OC OA = ( 3 , 4 ,1 ) (1 ,2 , 3 )= ( 3+1 , 42 , 13 )= ( 4 ,2 ,2 )
AC= ( 4 , 2,2 )
BD= OD OB= ( 2, 2 , 3 ) ( 0 , 4 ,1 )= ( 20,24 ,31 )= ( 2 ,2 ,2 )
BD= ( 2 ,2 ,2 )
Part c
AC and BD are the diagonals of the quadrilateral
If AC and BD are perpendicular to each other, the
AC . BD=0
AC= ( 4 , 2,2 )
BD= ( 2 ,2 ,2 )
Hence AC . BD=0
This proves that the diagonals are
perpendicular
QUESTION 8
Document Page
LINEAR ALGEBRA 18
The parallelogram above ABCD have the vectors
AB= ~a, BC = ~
b , AD= ~
b, DC= ~a
´BD, and ´AC are the diagonals
´AC= AB+ BC= ~a+ ~
b
´BD= AB+, AD= ~
b¿ ~a
´AC . ´BD= ( ~a+ ~
b ) . ( ~
b ~a )
¿ ¿ ~
b¿2|~a|2=0 ¿
This implies that ´AC is perpendicular ¿ ´BD , hence it is a rhombus
chevron_up_icon
1 out of 18
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]