Linear Algebra Assignment Solutions

Verified

Added on  2023/05/31

|13
|2638
|468
AI Summary
This document contains solutions to Linear Algebra assignments and problems. It includes topics such as basis of P2, orthogonal basis of P2, inner product, and more.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Running head: ASSIGNMENT 1
Linear Algebra
Student Name
Institution
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ASSIGNMENT 2
Question 1
Question 1(a)
Let B= { x2, x,1} et S = { x2+x,2x-1,x+1} be two basis of P2
Let iB and is be the coordinate map induced on P2
B= { x2, x,1} T: P2 P2
S= S = { x2+x,2x-1,x+1}
B and S are two basis of P2
[T ]B , S = [ 1 2 0
1 3 5
2 2 2 ] = {xϵ R3| T x= 0}
[ 1 2 0
1 3 5
2 2 2 ] [ x1
x2
x3 ] = [ 0
0
0 ]
x1 - 2x2 = 0
x1 = 2 x2 ……………………. Equation (1)
- x1 +3 x2 +5 x3 = 0 ……………………… Equation (2)
2x1 + 2x2-2 x3 =0 ……………………….. Equation (3)
From Equation (1) and Equation (2)
-2 x2 +3 x2 +5 x3 = 0
x2 +5 x3 = 0
From Equation (1) and Equation (3)
4 x2 +2x2 -2 x3 = 0
6 x2 -2 x3 = 0
3 x2 - x3 = 0
Document Page
ASSIGNMENT 3
Therefore, x3 = 3 x2 = 3( x2
2 ¿
x3 = 3 x2
2
x2 = x1
2 x1 (1, 1
2 , 3
2 )
Null ( [T ]B ,θ) = {c(1, 1
2 , 3
2 ) ; cϵ R }
Null [ T BS ] = Span
{( 1
1
2
3
2 ) }
To find I B (T ) ,
[ 1 2 0
1 3 5
2 2 2 ]33 [ x1
x2
x3 ]31
= [ x1+2 x2
x1+3 x2 +5 x3
2 x1 +2 x2 2 x3 ]
= x1
[ 1
1
2 ] + x2
[ 2
3
2 ] + x3
[ 0
5
2 ]
Thus
[ 0
5
2 ] = 2 [ 1
1
2 ] + 1 [2
3
2 ]
= x1
[ 1
1
2 ] + x2
[ 2
3
2 ] - 2 x3
[ 1
1
2 ] + x3
[2
3
2 ]
= ( x1 -2 x3)
[ 1
1
2 ] + ( x2 + x3)
[2
3
2 ]
Document Page
ASSIGNMENT 4
I B (([T ])B , s) span {( 1
1
2 ) , ( 1
3
2 ) }
Therefore,
(T BS)= Span {( 1
1
2 ), (2
3
2 ), (0
5
2 ) }
Question 1(b)
T: M 33 P2
T
(a b c
d e f
g h i ) = (a-b) x2 +c(x-1)+d
T
(1 0 0
0 0 0
0 0 0 ) = x2
T
(0 1 0
0 0 0
0 0 0 ) = (-1) x2
T
(0 0 0
0 0 0
1 0 0 ) = 1(X-1)
T
(0 0 0
0 0 0
0 0 1 ) = 1
Now,
T
(a b c
d e f
g h 1) = 0, a=1, e=1,i=1 and b,c,d,f,g,h = 0
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ASSIGNMENT 5
So the basis of Ker(T) = ( 1 0 0
0 1 0
0 0 1 )
And the basis of Image of T (Im(T) )
= {1,X, X2}
Question 2
We have shall check the following inner product for < , ,> ; let u,v,wϵ v and λ is a scalar then;
a) <u,v>1 =¿ T ( u ) , T ( v )> ¿
¿ T ( v ) ,T ( w ) >¿ ¿ ¿
= ¿ v , u>¿ ¿ [ <,> is an inner product on V]
b) <u+v,w>1 = ¿ T ( u+ v ) ,T ( w ) >¿
= ¿ T ¿
= ¿ T ¿
=<u,w>1 =+ <v,w>1
c) <λu+v>1 = ¿ T ( λu ) , T ( v ) >¿
= ¿ λT ¿ [ T is linear]
= ¿ T ¿
=<u,w>1 =+ <v,w>1
d)
<u,u>1 = <T(u),T(w) 0 and <T(u) , T(u)> = 0 iff T(u) = θ
where θis the null element of u=θ [ T is injective ]
so, <u,u> 0 for all v and <u,u>1 for all uϵ V and <u,u>1 = 0 iff u=0
hence <,>1 satisfies all axioms of inner product and it is a inner product on V
If T is positive definite matrix, then T will give n inner product
Document Page
ASSIGNMENT 6
<f,g> =
0
1
(f ( t ) f ' ( t ) )( g ( t ) g' ( t ) )dt
<f,f> =
0
1
(f ( t )f ' ( t ) )2 dt
If <f,f> = 0 f ( t )f ' ( t ) = 0
f ( t )=f ' ( t )
f ( t )=et t and f ϵ pn
But et pn thus not an inner product since <f,f> = 0 f = 0 hence false
Question 3
Question 3(a)
(f,g) =
0

et f(t)g(t) dt
P(x) = x3
The basis of P2 is {1,x,x2}
We need to determine the orthogonal basis of P2
Let
v1 = 1 ………………….. Equation 1
v2 = x ………………….. Equation 2
v3 = x3 ………………….. Equation 3
Therefore by Gram Schmidt orthogonalization process, we get
w1 =1 …………………………………… Equation 4
v1 = 1 ……………………………….. Equation 5
w2 = v2- (v2 , w1 )
(w1 , w1)…………………………..Equation 6
Document Page
ASSIGNMENT 7
From equation 1 and 2,
w2 = x- ( x ,1)
(1,1) .1
w2 = x- 1
(x,1) =
0

et .t.1 dt = [ t etet ]
0 = 1
(1,1) =
0

et .1 dt = [ et ]
0 = 1
w3 = v3- ( v3 , v1)
( w1 , w1)* w1 - (v3 , w2 )
( w2 , w2)
= x2 ( x2 ,1)
(1,1) - ¿ ¿(x-1)
Therefore,
¿) =
0

et .t2 dt= 0+2 = 2
¿) =
0

et .t2 (t1) dt
=
0

t3 etdt -
0

t2 etdt
= 0+(3*2)-2
=4
(x-1,x-1) =
0

et .(t1)(t1) dt
=
0

et .(t22 t+1) dt
= 2-2+ [ et ]
0
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
ASSIGNMENT 8
=2-2+1
= 1
Therefore,
w3 = x2- 2
1- 4
1 (x-1)
= x2- 24 (x1)
= x2-2-4x+4
= x24x+2
Thus, orthogonal basis of P2 IS {1,x-1, x24x+2}
Orthogonal projection of P(x) = x3 onto P2 = Projw1P(x) Projw2P(x)+Projw3P(x)
= ( P ( x ) , w1)
( w1 , w1 ) w1 + ( P ( x ) , w2)
(w2 , w2 ) w2+( P ( x ) , w3)
( w3 , w3 ) w3
(P ( x ) , w1) = ( x3, 1)
=
0

et .t3 dt
= 0+(3*2)
= 6
(P ( x ) , w2) = ( x3, x-1)
=
0

et .t3 (t1)dt
=
0

et t4dt -
0

et t3dt
= 0+(24-6)
= 18
(P ( x ) , w3) = (x3, x24 x+2)
Document Page
ASSIGNMENT 9
=
0

et .t3 (t2 4 t +2)dt
= (0+518)-(4*18+12)
= 0+(24-6)
= 18+12
= 30
(w3 , w3 ¿ =
0

et .(t24 t+2)(t24 t+2)dt
=
0

et .¿-8t +2t2 -8t +4t) dt
=
0

et .¿-8t +2t2 -8t +4t) dt
=
0

et .¿) dt
= 24-8*6+20*2-16*1+4
= 4
Therefore, orthogonal projection of P(x) = x3 onto P2 is
= 6*1+18 w2 + 30
4 w3
= 6+18(x-1)+ 15
2 ¿ ¿ -4x+2)
= 6+18x-18+ 15
2 x2 -30x+15
= 15
2 x2 -12x+3
Question 3(b)
= {f*(P2|f(0) = 0}
Document Page
ASSIGNMENT 10
Let a+bx+(x2+a x3 E)
a+b(0) +c(0)2 +d(0)3-E
a+b(0) +c(0)2 +d(0)3-E = 0
a=0
Therefore, the elements of the form +( x2+a x3 E) and it is spanned by x, x2, x3 . Therefore basis
of E is (x,x2, x3) .
Question 4
Question 4
In order to prove u0 is unique in T(v) = < u0 , v> r ϵ v
Let u0 is not unique T(v) = < u0 , v>
T(v) = < u1 , v>
< u0 , v> = < u1 , v>
< u0-u1, 0> = 0
So by property of inner product u0-u1 (u0=u1) hence u0 is unique
Now to find qϵ p2 P ϵ P2
P(0) =
1
1
q (t)p(t) dt
Let q(t) = A+Bt+C t2
P(0) =
1
1
( A +Bt +C t2)p(t) dt
Let P(t) = 1 P2 ( x) 1 =
1
1
( A +Bt +C t2) dt
1= 2A+ 2C
3 ……………………………………………. Equation 1
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
ASSIGNMENT 11
P(t) = t 0 =
1
1
( At + B t2+C t3 )dt
P(0) = 0 0 = 0+ 2 B
3 +0 B=0 ……………………. Equation 2
Let P(t) = t2 P2
P(0) = 0
0 =
1
1
( A t 2 +B t3 +C t4 )dt
0 = 2A ( t3
3 )
'
+0 +2C( t5
5 )
'
0 = 2 A
3 + 2C
3 = 0 5A = -3C ………………. Equation 3
From equation 1,
1= 2 A+ 2C
3
1= 8
15 C
C= 15
8
A= 9
8
Therefore,
q(t) = 9
8 + 0.t- 15
8 t2
q(t) = 9
8 - 15
8 t2
Question 5
Question 5(a)
Document Page
ASSIGNMENT 12
Given, A= [ 3 2 2
2 3 2
2 2 3 ]
The characteristic equation of A is, |3x 2 2
2 3x 2
2 2 3x|x=0
i.e (3-x)*[(3x)24] – 2*[6-2x-4] +2*[4-+2x] = 0
(3-x)*[56 x+ x2] + 8x -8 =0
x3 - 9x2 +15x -7 =0
(x1)2 (X-7) = 0
X= 1, 1, 7
Thus the Eigenvalues of A are 1, 1, and 7 then the Eigenvectors are given as:
c
[
1
1
0 ] +d [1
0
1 ] Where c, d 0
The corresponding Eigenvector to the above Eigenvalue 7 is :
c
[1
1
1 ]
Let P = [1 1 1
1 0 1
0 1 1 ] and a non-singular matrix
Then,
AP = [3 2 2
2 3 2
2 2 3 ][1 1 1
1 0 1
0 1 1 ] = [ 1 1 7
1 0 7
0 1 7 ]
PD = [1 1 1
1 0 1
0 1 1 ][1 0 0
0 1 0
0 0 1 ] = [1 1 7
1 0 7
0 1 7 ]
Document Page
ASSIGNMENT 13
Thus, AP = PD
i.e A= PDPT where P-1= PT
Question 5(b)
The maximum value of G(u)
G
[u1
u2
u3 ] = 3 ( u1
2+ u2
2+ u3
2 ) +3 (u1 u2+u2 u3 +u3 u1 )
u1
2 +u2
2 +u3
2
Then the maximum value of G(u) is at (-1,0,1), (0,-1,1), (-1,1,0),(1,0,-1),(1,-1,0),and (0,1,-1)
chevron_up_icon
1 out of 13
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]