ProductsLogo
LogoStudy Documents
LogoAI Grader
LogoAI Answer
LogoAI Code Checker
LogoPlagiarism Checker
LogoAI Paraphraser
LogoAI Quiz
LogoAI Detector
PricingBlogAbout Us
logo

MacLaurin series for cosh(x), Taylor's inequality, sinc function, binomial series for sqrt(1-x^2)

Verified

Added on  2023/06/03

|4
|1316
|427
AI Summary
This text covers MacLaurin series for cosh(x), Taylor's inequality, sinc function, and binomial series for sqrt(1-x^2) with their respective applications. It also mentions Desklib as an online library for solved assignments, essays, dissertations, and more.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Order Id 814870
1. .
i) MacLaurin series for cosh(x)
cosh ( x )= ex+ ex
2
MacLaurin series of cosh ( x ) = ex+ ex
2 is defined as:
¿ e0+ e0
2 +
d
dx ( ex +ex
2 ) ( 0 )
1 ! x+
d2
d x2 ( e x+ ex
2 ) ( 0 )
2 ! x2+
d3
d x3 ( ex+ex
2 ) ( 0 )
2! x3 +
e0+ e0
2 =1
d
dx ( ex +e x
2 ) ( 0 ) =0 d2
d x2 ( ex+ ex
2 ) ( 0 )=1 d3
d x3 ( ex+ ex
2 ) ( 0 )=0 d4
d x4 ( ex +e x
2 ) ( 0 )=1
d5
d x5 ( ex+ ex
2 ) ( 0 )=0 d6
d x6 ( ex+ ex
2 ) ( 0 ) =1 d7
d x7 ( ex+ ex
2 ) ( 0 )=0 d8
d x8 ( ex+ ex
2 ) ( 0 ) =1
¿ 1+ 0
1 ! x+ 1
2 ! x2 + 0
3 ! x3+ 1
4 ! x4 + 0
5 ! x5 + 1
6 ! x6 + 0
7 ! x7 + 1
8 ! x8 +¿ 1+ 1
2! x2+ 1
4 ! x4 + 1
6 ! x6 + 1
8 ! x8 +
Thus the series representation is;

n=0
x2n
( 2 n ) !
ii) Taylor’s inequality says
|R4 ( x )|=|f ( x ) T 4 ( x )| M
( 4 +1 ) ! x4 +1T 4 ( x )=1+ 1
2 ! x2 + 1
4 ! x4
f 5 ( x )= d5
d x5 ( exex
2 )= 1
2 ( exex ) f 5 ( 1 ) =M = e1e1
2
The Taylor’s inequality becomes:

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
|R4 ( x )| e1e1
2×5 ! |x5
| |R4 ( x )| e1e1
2×5 ! |15
|= e1 e1
240 0.009793343
So the approximation is accurate to within e1 e1
240 0.009793343
iii) From part (ii), the convergence of cosh(x) can be determined by ratio test, thus:
lim
n ( an+1
an ) = lim
n
( x2 (n+1)
( 2(n+1) ) !
x2 n
( 2 n ) ! )=0
Therefore the series converges for all x
2. sinc (sine cardinal) function
sinc ( x ) = { 1 for x=0
sin ( x )
x Otherwise
MacLaurin series of cosh ( x ) = ex+ ex
2 is defined as:
¿ sinc(x)+
d
dx ( sinc ( x) ) ( 0 )
1 ! x+
d2
d x2 ( sinc(x ) ) ( 0 )
2 ! x2+
d3
d x3 ( sinc( x ) ) ( 0 )
2 ! x3+
sin ( x )
x = { 1 x =0
sin ( x )
x x 0
d
dx ( sinc( x) ) =
{ 0 x=0
xcos ( x )sin ( x )
x2 x 0
d2
d x2 ( sinc( x ) )=
{ 1
3 x=0
( 2x2 ) sin ( x )2 x cos (x )
x3 x 0
Using the first and second order:
sinc ( x ) =1 x2
3! + x4
5 ! sinc ( x ) =
n=0

( 1 ) n x2 n
( 2 n+1 ) !
Evaluating the limit of sinc(x) as x approaches 0
Document Page
lim
n 0
sinc ( x ) = lim
n 0 ( sin ( x )
x )= lim
n 0 (1 x2
3! + x4
5 ! )=1
3. MacLaurin series for sin(s^2)
¿ sin ( t2 ) +
d
dx ( sin ( t2 ) ) ( 0 )
1 ! x+
d2
d x2 ( sin ( t2 ) ) ( 0 )
2 ! x2+
d3
d x3 ( sin ( t2 ) ) ( 0 )
2 ! x3+
sin ( 0 ) =0
d
dx (sin ( t2 ) ) ( 0 ) =0 d2
d x2 ( sin ( t2 ) ) ( 0 ) =2 d3
d x3 ( sin ( t2 ) ) ( 0 )=0 d4
d x4 (sin ( t2 ) ) ( 0 )=0 d5
d x5 ( sin ( t2 ) ) ( 0 )=0
d6
d x6 ( sin ( t2 ) ) ( 0 )=120 d7
d x7 ( sin ( t2 ) ) ( 0 )=0 d8
d x8 ( sin ( t2 ) ) ( 0 )=0 d9
d x9 ( sin ( t2 ) ) ( 0 ) =0
d10
d x10 (sin ( t2 ) ) ( 0 )=30240
¿ 1+ 0
1 ! x+ 2
2 ! x2 + 0
3 ! x3+ 0
4 ! x4 + 0
5 ! x5 +120
6 ! x6+ 0
7 ! x7 + 0
8 ! x8 + +0
9! x9 + 30240
10 ! x10
¿ t 2 1
6 t6 + 1
120 t10 The Fresnel-sine integral:

0
x
sin ( t2 ) dt=
0
x
( t2 1
6 t6 + 1
120 t10 ) ¿ x3
3 x7
42 + x11
1320
4. Binomial series for 1
1x2
1
1x2 = ( 1x2 )
1
2
1
1x2 =1+ 1
2 (x2 ) +
1
2 (3
2 ) (x2 )2
2 ! +
1
2 (3
2 )(5
2 ) (x2 )3
3 ! + ¿ 1+ x2
2 + 3 x4
8 +5 x6
16 +
Now to evaluate E (k) let x2=k2 sin2 ( t ) x=ksin(t)E ( k ) =
0
π
2
1
1k2 sin2 ( t ) dt
Document Page
In equation 1+ x2
2 + 3 x4
8 +5 x6
16 + replace x with ksin ( t )
E ( k ) =
0
π
2
( 1+ ( ksin ( t ) )
2
2 + 3 ( ksin ( t ) ) 4
8 + 5 ( ksin ( t ) )
6
16 + ) dt¿ ¿ ¿¿ π
2 + π k 2
8 + 9 π k 4
128 + 25 πk6
1024 +
¿ π
2
n=0
( 2 n1 ) 2 k2 n
23n
1 out of 4
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]