MacLaurin series for cosh(x), Taylor's inequality, sinc function, binomial series for sqrt(1-x^2)

Verified

Added on  2023/06/03

|4
|1316
|427
AI Summary
This text covers MacLaurin series for cosh(x), Taylor's inequality, sinc function, and binomial series for sqrt(1-x^2) with their respective applications. It also mentions Desklib as an online library for solved assignments, essays, dissertations, and more.
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Order Id 814870
1. .
i) MacLaurin series for cosh(x)
cosh ( x )= ex+ ex
2
MacLaurin series of cosh ( x ) = ex+ ex
2 is defined as:
¿ e0+ e0
2 +
d
dx ( ex +ex
2 ) ( 0 )
1 ! x+
d2
d x2 ( e x+ ex
2 ) ( 0 )
2 ! x2+
d3
d x3 ( ex+ex
2 ) ( 0 )
2! x3 +
e0+ e0
2 =1
d
dx ( ex +e x
2 ) ( 0 ) =0 d2
d x2 ( ex+ ex
2 ) ( 0 )=1 d3
d x3 ( ex+ ex
2 ) ( 0 )=0 d4
d x4 ( ex +e x
2 ) ( 0 )=1
d5
d x5 ( ex+ ex
2 ) ( 0 )=0 d6
d x6 ( ex+ ex
2 ) ( 0 ) =1 d7
d x7 ( ex+ ex
2 ) ( 0 )=0 d8
d x8 ( ex+ ex
2 ) ( 0 ) =1
¿ 1+ 0
1 ! x+ 1
2 ! x2 + 0
3 ! x3+ 1
4 ! x4 + 0
5 ! x5 + 1
6 ! x6 + 0
7 ! x7 + 1
8 ! x8 +¿ 1+ 1
2! x2+ 1
4 ! x4 + 1
6 ! x6 + 1
8 ! x8 +
Thus the series representation is;

n=0
x2n
( 2 n ) !
ii) Taylor’s inequality says
|R4 ( x )|=|f ( x ) T 4 ( x )| M
( 4 +1 ) ! x4 +1T 4 ( x )=1+ 1
2 ! x2 + 1
4 ! x4
f 5 ( x )= d5
d x5 ( exex
2 )= 1
2 ( exex ) f 5 ( 1 ) =M = e1e1
2
The Taylor’s inequality becomes:
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
|R4 ( x )| e1e1
2×5 ! |x5
| |R4 ( x )| e1e1
2×5 ! |15
|= e1 e1
240 0.009793343
So the approximation is accurate to within e1 e1
240 0.009793343
iii) From part (ii), the convergence of cosh(x) can be determined by ratio test, thus:
lim
n ( an+1
an ) = lim
n
( x2 (n+1)
( 2(n+1) ) !
x2 n
( 2 n ) ! )=0
Therefore the series converges for all x
2. sinc (sine cardinal) function
sinc ( x ) = { 1 for x=0
sin ( x )
x Otherwise
MacLaurin series of cosh ( x ) = ex+ ex
2 is defined as:
¿ sinc(x)+
d
dx ( sinc ( x) ) ( 0 )
1 ! x+
d2
d x2 ( sinc(x ) ) ( 0 )
2 ! x2+
d3
d x3 ( sinc( x ) ) ( 0 )
2 ! x3+
sin ( x )
x = { 1 x =0
sin ( x )
x x 0
d
dx ( sinc( x) ) =
{ 0 x=0
xcos ( x )sin ( x )
x2 x 0
d2
d x2 ( sinc( x ) )=
{ 1
3 x=0
( 2x2 ) sin ( x )2 x cos (x )
x3 x 0
Using the first and second order:
sinc ( x ) =1 x2
3! + x4
5 ! sinc ( x ) =
n=0

( 1 ) n x2 n
( 2 n+1 ) !
Evaluating the limit of sinc(x) as x approaches 0
Document Page
lim
n 0
sinc ( x ) = lim
n 0 ( sin ( x )
x )= lim
n 0 (1 x2
3! + x4
5 ! )=1
3. MacLaurin series for sin(s^2)
¿ sin ( t2 ) +
d
dx ( sin ( t2 ) ) ( 0 )
1 ! x+
d2
d x2 ( sin ( t2 ) ) ( 0 )
2 ! x2+
d3
d x3 ( sin ( t2 ) ) ( 0 )
2 ! x3+
sin ( 0 ) =0
d
dx (sin ( t2 ) ) ( 0 ) =0 d2
d x2 ( sin ( t2 ) ) ( 0 ) =2 d3
d x3 ( sin ( t2 ) ) ( 0 )=0 d4
d x4 (sin ( t2 ) ) ( 0 )=0 d5
d x5 ( sin ( t2 ) ) ( 0 )=0
d6
d x6 ( sin ( t2 ) ) ( 0 )=120 d7
d x7 ( sin ( t2 ) ) ( 0 )=0 d8
d x8 ( sin ( t2 ) ) ( 0 )=0 d9
d x9 ( sin ( t2 ) ) ( 0 ) =0
d10
d x10 (sin ( t2 ) ) ( 0 )=30240
¿ 1+ 0
1 ! x+ 2
2 ! x2 + 0
3 ! x3+ 0
4 ! x4 + 0
5 ! x5 +120
6 ! x6+ 0
7 ! x7 + 0
8 ! x8 + +0
9! x9 + 30240
10 ! x10
¿ t 2 1
6 t6 + 1
120 t10 The Fresnel-sine integral:

0
x
sin ( t2 ) dt=
0
x
( t2 1
6 t6 + 1
120 t10 ) ¿ x3
3 x7
42 + x11
1320
4. Binomial series for 1
1x2
1
1x2 = ( 1x2 )
1
2
1
1x2 =1+ 1
2 (x2 ) +
1
2 (3
2 ) (x2 )2
2 ! +
1
2 (3
2 )(5
2 ) (x2 )3
3 ! + ¿ 1+ x2
2 + 3 x4
8 +5 x6
16 +
Now to evaluate E (k) let x2=k2 sin2 ( t ) x=ksin(t)E ( k ) =
0
π
2
1
1k2 sin2 ( t ) dt
Document Page
In equation 1+ x2
2 + 3 x4
8 +5 x6
16 + replace x with ksin ( t )
E ( k ) =
0
π
2
( 1+ ( ksin ( t ) )
2
2 + 3 ( ksin ( t ) ) 4
8 + 5 ( ksin ( t ) )
6
16 + ) dt¿ ¿ ¿¿ π
2 + π k 2
8 + 9 π k 4
128 + 25 πk6
1024 +
¿ π
2
n=0
( 2 n1 ) 2 k2 n
23n
chevron_up_icon
1 out of 4
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]