DIP1003 Algebra Assignment: Semester 1, 2019 - Expressions, Equations

Verified

Added on  2023/04/20

|6
|1031
|264
Homework Assignment
AI Summary
This algebra assignment focuses on simplifying expressions, solving equations, and working with inequalities. It includes problems such as expanding and simplifying algebraic expressions using identities, finding the values of x in equations using the zero-product property, solving equations for a specific variable, factorizing expressions, and solving inequalities and representing the solutions in interval notation. The assignment also contains a word problem involving finding the dimensions of a book given its area and a relationship between its length and width. The solutions provided demonstrate step-by-step working to arrive at the final answers.
Document Page
DIP1003 SEMESTER 1,2019
ASSIGNMENT 2
MARCH 26, 2019
Submitted by:
Timo Weiss
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
1. Expand and simplify the following expressions:
a) (πŸ’π’™ + π’š)𝟐 βˆ’ πŸ‘π’™(π’š + πŸπ’™)
Sol.
Using (π‘Ž + 𝑏)2 = π‘Ž2 + 𝑏2 + 2π‘Žπ‘
(4π‘₯ + 𝑦)2 βˆ’ 3π‘₯(𝑦 + 2π‘₯)
= ((4π‘₯)2 + 𝑦2 + 2(4π‘₯)(𝑦)) βˆ’ 3π‘₯(𝑦 + 2π‘₯)
= 16π‘₯ 2 + 𝑦2 + 8π‘₯𝑦 βˆ’ 3π‘₯𝑦 βˆ’ 6π‘₯ 2
= 10π‘₯ 2 + 𝑦2 + 5π‘₯𝑦
b)
(π’™πŸ’π’šπŸŽπ’›πŸ”)
𝟏
𝟐(𝒙
βˆ’πŸ‘
𝟐 π’š
πŸ”
𝟐)
βˆ’πŸ
π’™πŸ’π’šπŸπ’›πŸ‘
π’™βˆ’πŸ’π’šπ’›πŸ‘
Sol.
(π‘₯4𝑦0𝑧6)1
2(π‘₯βˆ’3
2 𝑦6
2)βˆ’2π‘₯4𝑦2𝑧3
π‘₯βˆ’4𝑦𝑧3
= (π‘₯2𝑧3)π‘₯4𝑦2𝑧3
(π‘₯βˆ’3𝑦6)(π‘₯βˆ’4𝑦𝑧3)
= π‘₯6𝑦2𝑧6
π‘₯βˆ’7𝑦7𝑧3
= π‘₯13 π‘¦βˆ’5𝑧3
= π‘₯13 𝑧3
𝑦5
2. Fid the values of x in the following equation using the rule that if 𝒂 βˆ— 𝒃 = 𝟎 then 𝒂 =
𝟎 𝒐𝒓 𝒃 = 𝟎 . Do not expand the equation or use the quadratic formula.
(πŸ“π’™ + πŸ”) (πŸ‘π’™ βˆ’ 𝟐
πŸ‘) = 𝟎
Sol.
πΈπ‘–π‘‘β„Žπ‘’π‘Ÿ (5π‘₯ + 6) = 0 π‘œπ‘Ÿ (3π‘₯ βˆ’ 2
3) = 0
5π‘₯ + 6 = 0
π‘₯ = βˆ’6
5
(3π‘₯ βˆ’ 2
3) = 0
Document Page
3π‘₯ = 2
3
π‘₯ = 2
9
π‘₯ = βˆ’6
5 π‘œπ‘Ÿ 2
9
3. Solve the following equation for π’Ž.
Hint: π’‚πŸ βˆ’ π’ƒπŸ = (𝒂 βˆ’ 𝒃)(𝒂 + 𝒃)
(πŸπ’Ž)𝟐 βˆ’ πŸ’
π’ŽπŸ + 𝟏 = πŸπ’Ž + 𝟐
π’Ž + 𝟐
Sol.
(2π‘š)2 βˆ’ 4
π‘š2 + 1 = 2π‘š + 2
π‘š + 2
= (2π‘š)2 βˆ’ 22
π‘š2 + 1 = 2π‘š + 2
π‘š + 2
= (2π‘š + 2)(2π‘š βˆ’ 2)
π‘š2 + 1 = 2π‘š + 2
π‘š + 2
= 4(π‘š + 1)(π‘š βˆ’ 1)
π‘š2 + 1 = 2(π‘š + 1)
π‘š + 2
= 2(π‘š βˆ’ 1)
π‘š2 + 1 = 1
π‘š + 2
2(π‘š βˆ’ 1)(π‘š + 2) = π‘š2 + 1
2(π‘š2 + 2π‘š βˆ’ π‘š βˆ’ 2) = π‘š2 + 1
2π‘š2 + π‘š βˆ’ 2 = π‘š 2 + 1
= π‘š2 + π‘š βˆ’ 3
4. Factorise the following expressions:
a) πŸ‘πŸ”π’™πŸ βˆ’ πŸ–πŸ
Sol.
36π‘₯2 βˆ’ 81
= (6π‘₯) 2 βˆ’ 92
π‘ˆπ‘ π‘–π‘›π‘” π‘Ž2 βˆ’ 𝑏2 = (π‘Ž + 𝑏)(π‘Ž βˆ’ 𝑏)
= (6π‘₯ + 9)(6π‘₯ βˆ’ 9)
Document Page
= 9(2π‘₯ + 3)(2π‘₯ βˆ’ 3)
b) πŸπŸ•π’™πŸ–π’šπŸ— + πŸ’πŸ“π’™πŸ—π’šπŸ“
Sol.
27π‘₯8𝑦9 + 45π‘₯9𝑦5
= 9π‘₯ 8 𝑦5(3𝑦4 + 5π‘₯)
c) π’™πŸ + πŸπ’™ βˆ’ πŸπŸ“
Sol.
π‘₯2 + 2π‘₯ βˆ’ 15
= π‘₯ 2 + 5π‘₯ βˆ’ 3π‘₯ βˆ’ 15
= (π‘₯ + 5)(π‘₯ βˆ’ 3)
5. Solve each inequality and write your answer in interval notation.
a) βˆ’πŸ < πŸ•π’™βˆ’πŸ“
πŸ‘ ≀ πŸ‘
Sol.
βˆ’2 < 7π‘₯ βˆ’ 5
3
βˆ’6 < 7π‘₯ βˆ’ 5
6 > 5 βˆ’ 7π‘₯
1 > βˆ’7π‘₯
βˆ’1 < 7π‘₯
π‘₯ > βˆ’1
7
7π‘₯ βˆ’ 5
3 ≀ 3
7π‘₯ βˆ’ 5 ≀ 9
7π‘₯ ≀ 14
π‘₯ ≀ 2
βˆ’1
7 < π‘₯ ≀ 2
b) |πŸ•π’™ + πŸ“| > 𝟐
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Sol.
|7π‘₯ + 5| > 2
βˆ’2 < 7π‘₯ + 5 < 2
7π‘₯ + 5 > βˆ’2
7π‘₯ > βˆ’7
π‘₯ > βˆ’1
7π‘₯ + 5 < 2
7π‘₯ < βˆ’3
π‘₯ < βˆ’3
7
βˆ’1 < π‘₯ < βˆ’3
7
c) πŸ‘π’™ + πŸ“ < πŸ–π’™ ≀ πŸπŸ“
Sol.
8π‘₯ > 3π‘₯ + 5
5π‘₯ > 5
π‘₯ > 1
8π‘₯ ≀ 25
π‘₯ ≀ 25
8
1 < π‘₯ ≀ 25
8
6. The area of the front of a book is πŸ”πŸŽ π’„π’ŽπŸ. The length of the book is πŸ• π’„π’Ž longer than
the width.
a) If the length of the book is 𝒙 π’„π’Ž, find the quadratic equation for the area of the
book 𝑨 using only the variables 𝒙 and 𝑨.
Sol.
𝐴 = π‘₯ βˆ— π‘€π‘–π‘‘π‘‘β„Ž … … … (1)
Document Page
π‘₯ = π‘€π‘–π‘‘π‘‘β„Ž + 7
π‘€π‘–π‘‘π‘‘β„Ž = 7 βˆ’ π‘₯ … … … (2)
πΉπ‘Ÿπ‘œπ‘š πΈπ‘ž(1) π‘Žπ‘›π‘‘ πΈπ‘ž(2)
𝐴 = π‘₯ (7 βˆ’ π‘₯)
𝐴 = 7π‘₯ βˆ’ π‘₯ 2
π‘₯2 βˆ’ 7π‘₯ + 𝐴 = 0
b) What are the dimensions of the book?
Sol.
𝐿𝑒𝑑 π‘‘β„Žπ‘’ π‘‘π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘  π‘œπ‘“ π‘‘β„Žπ‘’ π‘π‘œπ‘œπ‘˜ 𝑏𝑒 𝑙 π‘π‘š π‘Žπ‘›π‘‘ 𝑏 π‘π‘š π‘Ÿπ‘’π‘ π‘π‘’π‘π‘‘π‘–π‘£π‘’π‘™π‘¦
𝐴𝑐𝑐 π‘‘π‘œ π‘‘β„Žπ‘’ π‘žπ‘’π‘’π‘ π‘‘π‘–π‘œπ‘›,
𝑙𝑏 = 60 … … … (1)
𝑙 = 𝑏 + 7 … … … (2)
πΉπ‘Ÿπ‘œπ‘š πΈπ‘ž(1) π‘Žπ‘›π‘‘ πΈπ‘ž(2)
(𝑏 + 7)(𝑏) = 60
𝑏2 + 7𝑏 βˆ’ 60 = 0
𝑏2 + 12𝑏 βˆ’ 5𝑏 βˆ’ 60 = 0
𝑏(𝑏 + 12) βˆ’ 5(𝑏 + 12) = 0
(𝑏 + 12)(𝑏 βˆ’ 5) = 0
𝑏 = βˆ’12 π‘œπ‘Ÿ 𝑏 = 5
∡ π‘€π‘–π‘‘π‘‘β„Ž π‘π‘Žπ‘› π‘›π‘œπ‘‘ 𝑏𝑒 π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’, 𝑀𝑒 π‘–π‘”π‘›π‘œπ‘Ÿπ‘’ π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’ π‘£π‘Žπ‘™π‘’π‘’
𝑏 = 5
πΉπ‘Ÿπ‘œπ‘š πΈπ‘ž(2)
𝑙 = 5 + 7 = 12
π·π‘–π‘šπ‘’π‘›π‘ π‘–π‘œπ‘›π‘ : π‘™π‘’π‘›π‘”π‘‘β„Ž = 12π‘π‘š, π‘€π‘–π‘‘π‘‘β„Ž = 5π‘π‘š
chevron_up_icon
1 out of 6
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]