MATH 070 - Homework: Equation Solving and Expression Simplification

Verified

Added on  2023/06/10

|18
|2067
|399
Homework Assignment
AI Summary
This document presents solutions to a MATH 070 algebra homework assignment, covering a range of topics including solving linear equations, simplifying algebraic expressions, applying the Pythagorean theorem, factoring polynomials, and working with slopes and intercepts. The solutions provide step-by-step explanations for each problem, demonstrating techniques for isolating variables, combining like terms, and manipulating equations to arrive at the correct answers. The assignment includes problems involving graphing linear equations, simplifying rational expressions, evaluating expressions with exponents, and solving systems of equations. The document is available on Desklib, a platform offering a wealth of academic resources including past papers and solved assignments to support student learning.
Document Page
Running head: MATH 070 1
Math 070
Name
Institution
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATH 070 2
Question 1
2 x5 y=1 0
Using the equation, we get the coordinates shown in the table below.
x -5 0 5
y -4 -2 0
The resulting graph is shown in figure 1 below:
Figure 1: A graph of 2 x5 y=1 0
Question 2
3 y +21
5 y 15 . y2 y6
y249
We factorize and simplify the equation as follows:
3 y +21
5 y 15 . y2 y6
y249 = 3 ( y +7)
5( y3) . y23+2 y 6
( y +7)( y7)
¿ 3( y +7)
5( y3) . y ( y3)+2( y 3)
( y+ 7)( y7)
Document Page
MATH 070 3
¿ 3( y +7)
5( y3) . ( y +2)( y 3)
( y +7)( y 7) =3
5
( y +2)
( y7)
Question 3
v=5 , m=4
4 v2m2=4 ( 5 ) 2 ( 4 ) 2=4 ( 25 ) 16=10016=84
Question 4
7 ( x2 )=4 x +1
7 x14=4 x+1
7 x4 x=14+1
3 x=15
x= 15
3 =5
Question 5
y2=4 y +12
y24 y12=0
y26 y +2 y12=0
y ( y 6)+ 2( y6)=0
( y +2 ) ( y6 ) =0
y +2=0 , y =2
Document Page
MATH 070 4
y6=0 , y=6
Therefore, y=2 y=6
Question 6
Using Pythagoras theorem, c2=102 +242
c2=100+576=676
c= 676=26
Question 7
28 w5 n735 w n5
7 w n4
First, we simplify the numerator to get,
28 w5 n735 w n5
7 w n4 =7 w n5 (4 w4 n25)
7 w n4 = 7 w n5
7 w n4 ( 4 w4 n25)
¿ n ( 4 w4 n25 ) =4 w4 n35 n
Question 8
slope of l inethrough ( 2 ,4 ) (6,7)
slope= y2 y1
x2x1
=7(4 )
62 = 7+ 4
4 = 11
4
Question 9
x217 x+30
x217 x+ 30=x215 x2 x+30
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATH 070 5
¿ x ( x15 ) 2 ( x15 ) = ( x2 ) (x15)
Question 10
7 x +2 y =11
7 x +2 y 7 x=117 x
2 y=1 17 x
y= 1 17 x
2 =5.53.5 x
Question 11
25 x249 y2=52 x272 y2
Using the rule, a2b2=(a+ b)(ab)
52 x2 72 y2 =(5 x +7 y)(5 x7 y )
Question 12
4 a+7
a+ 1 3 a10
a+1
The denominator is the same hence, we get
4 a+7
a+1 3 a10
a+1 =1 ( 4 a+7 ) 1 ( 3 a10 )
a+1 = 4 a+73 a+10
a+1
¿ a+17
a+1
Question 13
(5 w ¿¿ 5 y3 )4 =54 (w5 )4 ( y3 )4=54 w20 y12=625 w20 y12 ¿
Document Page
MATH 070 6
Question 14
( 4 x7 ) ( 5 x+2 ) =4 x ( 5 x+2 ) 7(5 x +2)
¿ 20 x2+8 x35 x14=20 x227 x14
Question 15
8 b224 b=8 b(b3)
Question 16
y-intercept occurs when x=0. So, the line passes through point (0,5)
Let the line pass via another arbitrary point with coordinates (x , y ) so that,
y5
x0 =slope=4
y5
x =4
y5=4 x
y=4 x +5
Question 17
(3 y ¿¿ 26 y 7)(8 y26 y +1) ¿
(3 y ¿¿ 26 y 7)(8 y26 y +1)=(3 y ¿¿ 28 y2)6 y(6 y)71 ¿ ¿
¿5 y26 y +6 y8
¿5 y28
Document Page
MATH 070 7
Question 18
10 less than twice x is written as 10< 2 x
Question 19
¿ 2 x2 +19 x +2 2
x +5
2 x2 +19 x+22 (2x)
(2 x2 +10 x)
9 x +22
9 x+22
x +5
9 x +22(9)
( 9 x +45 )
23
Therefore,
2 x2 +19 x+2 2
x +5 =2 x+ 9 23
x+5
Question 20
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATH 070 8
x2 y6
x5 y 4 =
y6
( 1
x2 )
x5 y4 = y6
x5 y 4 x2 = y2
x7
Question 21
8+ x
3 =10
8+ x
3 8=1 08
x
3 =2
3 × x
3 =2× 3
x=2 ×3=6
Question 22
(2,1)
Let the line pass via an arbitrary point with coordinates (x , y ) so that the slope becomes,
y2
x1 =slope=3
y2
x1 × ( x1 )=3(x 1)
y2=3 x3
y2+ 2=3 x3+2
y=3 x1
Document Page
MATH 070 9
Question 23
y=3 x11
The equation is in the form, y=m x+ c where m is the gradient and c the y-intercept. By
observation, m=3c=11. Therefore, the slope is 3 whereas the y-intercept is -11.
Question 24
x + y <3
x2 y <6
x + y=3
x 0 3 5
y 3 0 -2
at point ( 0,0 ) x+ y<3 becomes 0+0<3 , 0<3. The point satisfies the inequality hence we shade the
area above the line.
x2 y=6
x 0 4 6
y -3 -1 0
at point ( 0,0 ) x2 y< 6 becomes 00<6 , 0< 6. The point satisfies the inequality hence we shade
the area below the line to obtain the wanted region shown in figure 2 below.
Document Page
MATH 070 10
Figure 2: Wanted region R
Question 25
9 x + y=9 1
x +3 y=14 2
First, we multiply equation 1 by three to get equation 3 as follows
3(9 x + y =9)
27 x +3 y=27 3
Then, subtract equation 2 from equation 3 to obtain,
( 27 x +3 y ) ( x +3 y ) =2 714
26 x=13 , x= 13
26 =0.5
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATH 070 11
Substituting x=0.5 into equation 1 we obtain,
9( 0.5)+ y=9
4.5+ y=9
4.5+ y4.5=94.5
y=4.5
Therefore, x=0.5 , y=4.5
Question 26
( 0 ,5 ) , m=2
3
Let the line pass via an arbitrary point with coordinates (x , y ) so that the slope becomes,
y5
x0 =slope= 2
3
y+ 5
x = 2
3
y+ 5
x × x= 2
3 × x
y +5=2
3 x
y +55= 2
3 x5
y= 2
3 x 5
Question 27
Document Page
MATH 070 12
( 2 , 3 ) ,m=3
Let the line pass via an arbitrary point with coordinates (x , y ) so that the slope becomes,
y3
x2 =slope=3
y3
x2 ×(x2)= 2
3 (x2)
y3= 2
3 x 2
3
y3+ 3= 2
3 x 2
3 +3
y= 2
3 x +2 1
3
Question 28
( 0 ,3 ) , m=0
Let the line pass via an arbitrary point with coordinates (x , y ) so that the slope becomes,
y3
x0 =slope=0
y+ 3
x =0
( y +3)× x=0( x)
y +3=0 ,
y=3
Document Page
MATH 070 13
Question 29
( 4 , 3 ) ,m=undefined
When the gradient of a line is undefined, it means that the line is vertical. Therefore, a vertical
line passing through point ( 4 , 3 ) has the equation, x=4
Question 30
( x2 y ) ( 2 x +3 y )=x ( 2 x +3 y )2 y (2 x+3 y )
¿ 2 x2 +3 xy4 xy +6 y2
¿ 2 x2 xy+ 6 y2
Question 31
3 m2 n6 mn2+9 mn
3 m2 n6 mn2+9 mn=3 mn(m2 n+3)
Question 32
2 w2 +11 w21
w249 ÷(4 w6)
2 w2 +11 w21
w249 ÷ ( 4 w6 ) = 2 w2 +11 w21
w249 × 1
( 4 w6)= 2 w2 +11 w21
(w ¿¿ 249)( 4 w6)¿
¿ 2 w2+11 w21
( w¿¿ 249)(4 w6)= 2 w2 +11 w21
w2 ( 4 w6 )49(4 w6)= 2 w2+11 w21
4 w324 w2196 w +294 ¿
Question 33
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
MATH 070 14
6 x
5 . 10
18 x2 = 6 x ( 10 )
5(18 x2) = 60 x
90 x2 = 2
3 x
Question 34
x2
x4 16
x4 = x216
x4
Using the identity a2b2= ( a+b ) ( ab ) , x216 becomes
x216= ( x+4 ) ( x4 ) so that ,
x2 16
x4 = ( x +4 ) ( x4 )
x4 =x +4
Question 35
x
x4 = 15
x3 2 x
x27 x +12
x27 x+12=x24 x3 x+12=x ( x4 ) 3 ( x 4 )= ( x3 ) ( x4 ) so that
x
x4 = 15
x3 2 x
( x3 ) ( x4 )
x
x4 =15 ( x4 ) 2 x
( x3 ) ( x4 ) = 15 x 602 x
( x3 ) ( x4 ) = 13 x 60
( x3 ) ( x4 )
x
x4 = 13 x60
( x3 ) ( x4 )
x
x4 ×(x4)= 13 x60
( x3 ) ( x4 ) ×( x4)
Document Page
MATH 070 15
x= 13 x 60
( x3 )
( x3 ) x= 13 x 60
( x3 ) ×(x3)
x23 x=13 x60
x23 x13 x+ 60=13 x6013 x +60=0
x216 x+ 60=0
x210 x6 x+ 60=0
x ( x10)6 ( x10)=0
( x6 ) ( x10 )=0
x6=0 , x=6
x10=0 , x=10
Therefore, x=6x=10
Question 36
2
3 x2 y + 3
4 x3 = 2 ( 4 x ) +3(3 y )
12 x3 y = 8 x +9 y
12 x3 y
Question 37
5(2 x2 y )0
Any number raised to power zero equals 1. As a result, (2 x2 y )0=1. Hence,
5(2 x2 y )0=5 ( 1 )=5
Document Page
MATH 070 16
Question 38
25 x2 y2
5 x2 y3 =25
5 x2(2) y23=5 x0 y5= 5 (1 )
y5 = 5
y5
Question 39
5 x2 y15 xy +10 x y2=5 xy (x 3+2 y)
Question 40
21 x528 x4 +14 x3
7 x = 21 x5
7 x 28 x4
7 x + 14 x3
7 x =3 x4 4 x3 +2 x2
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
MATH 070 17
Document Page
MATH 070 18
chevron_up_icon
1 out of 18
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]