Solution1.1:- f (x) = 3x-1 g (x)= x2-2x According to the property f-g= (f-g) x=f(x)-g(x) (f-g) x= 3x-1 - (x2-2x) (f-g) x= 3x-1 + (x2-2x) (f-g) x=5x-1- x2or (f-g) x= - ( x2- 5x+1) 1.2 Solution:- According to the property (fog) x = f(g(x)) =f ((-2x)) =3(x2-2x)-1 =3 x2-6x-1 1.3 Solution:- According to the property (gof) x = g(f(x)) =g(f(x) =g(3x-1) g(x)= x2-2x = (3x-1)2-2(3x-1) = 9x2+1-6x-6x+2 = 9x3+3 1.4 Solution:- =g (3x-1) Put x=0 According to the g (f (0))
It becomes g(-1) Now put -1 in g(x) G (x) = x2-2x g (-1) = (-1)2-2(-1) = 1+2 = 3 2.1Solution:- f (x) =√(6-x) Domain =√ (6-x): x<=6 Intervals:(-infinity, 6) 6-x>=0 -x>=-6 Therefore Non- negative or positive value exist x<=6 Case 1:-(-infinity, -6)=√ (6-x) put x=-5 =6-x = 6(-5) = 6+5 =11 Case 2:-(-6, 6) =6-x put x=5 =6-5 =1 Case 3:-(6, infinity) ==6-x put x=7 =-1 Domain x<=6
2.2 Solution:- g(x) = x^4-3x^3+5x^2-2 x^4-3x^3+5x^2-2 lies in –infinity to infinity Interval: (–infinity, infinity) The functions have not under defined points and no any domain constraints. Because it’s real roots not exist. Therefore domain: -infinity<x<infinity 3 Solution:- Each trees produces Apples = 900 - 9n An =n (900-9n) An=900n-9n2 An=-9( 100n+n2) 0r An=-9(n2+100n) On Solving An=-9(n2+100n+ (-50)2) + 9+ 9( -50)2 An =-9(n-50)2 The Maximum Number of apple produced each year per year = 22500 apples 4 Solution ( Bonus Question):- f (x) = 3x-1 put the value in ( f( x + h) – f(x)/h) ((2 x -3 +h)-(2x-3) /h) (2x-3 +h -2h +3)/h =h/h =1