This document discusses various concepts in mathematics, including equations of lines, intersection points, and Pappus's Hexagon Theorem. It also includes solved problems on topics like distance, speed, and fractions. The document provides step-by-step explanations and calculations for each problem.
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Running head: MATHEMATICS1 Mathematics Name Institution
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MATHEMATICS2 Question 1 Part a A(3,14),B(7,26),∧C(9,32) AB=(7−3,26−14)=(4,12)=4(1,3) BC=(9−7,32−26)=(2,6)=2(1,3) Which implies thatAB=2BC. Since AB is a multiple of BC, the points lie on a straight. Part b Equation of AE A(3,14)∧E(5,0) Gradient=0−14 5−3=−14 2=−7 Let the line pass through point A and an arbitrary point with coordinates(x,y). Gradient=y−14 x−3=−7 y−14=−7(x−3) y=−7x+21+14=−7x+35 y=−7x+35 Equation of AF A(3,14)∧F(14,0)
MATHEMATICS3 Gradient=0−14 14−3=−14 11 Let the line pass through point A and an arbitrary point with coordinates(x,y). Gradient=y−14 x−3=−14 11 y−14=−14 11(x−3)=−14 11x+42 11 y=−14 11x+42 11+14 y=−14 11x+196 11 Equation of BD B(7,26)∧D(0,0) Gradient=0−26 0−7=−26 −7=26 7 Let the line pass through point D and an arbitrary point with coordinates(x,y). Gradient=y−0 x−0=26 7 y=26 7x Equation of BF B(7,26)∧F(14,0) Gradient=0−26 14−7=−26 7
MATHEMATICS4 Let the line pass through point B and an arbitrary point with coordinates(x,y). Gradient=y−26 x−7=−26 7 y−26=−26 7(x−7) y=−26 7x+26+26=−26 7x+52 y=−26 7x+52 Equation of CD C(9,32)∧D(0,0) Gradient=0−32 0−9=−32 −9=32 9 Let the line pass through point D and an arbitrary point with coordinates(x,y). Gradient=y−0 x−0=32 9 y=32 9x Equation of CE C(9,32)∧E(5,0) Gradient=0−32 5−9=−32 −4=8 Let the line pass through point E and an arbitrary point with coordinates(x,y).
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MATHEMATICS5 Gradient=y−0 x−5=8 y=8(x−5) y=8x−40 Part c Coordinates of x X is the point of intersection between lines AE and BD AE:y=−7x+35 y+7x=35…equation1 BD:y=26 7x…equation2 Substitute the value of y in equation 2 into equation 1 to get: 26 7x+7x=35 26 7x+7x=35 75 7x=35 x=35×7 75=49 15 y=26 7x=26 7×49 15=182 15
MATHEMATICS6 x=(49 15,182 15) Coordinates of y y is the point of intersection between lines CD and AF CD:y=8x−40…equation1 AF:y=−14 11x+196 11…equation2 Substitute the value of y in equation 1 into equation 2 to get: 8x−40=−14 11x+196 11 8x+14 11x=196 11+40 102 11x=636 11 x=636 11×11 102=106 17 y=8x−40=8×106 17−40=168 17 y=(106 17,168 17) Coordinates of z z is the point of intersection between lines BF and CE BF:y=−26 7x+52…equation1
MATHEMATICS7 CE:y=8x−40…equation2 Substitute the value of y in equation 1 into equation 2 to get: −26 7x+52=8x−40 8x+26 7x=52+40 8x+26 7x=52+40 82x 7=92 x=92×7 82=322 41 y=8x−40=8(322 41)−40=936 41 z=(322 41,936 41) Part d x=(49 15,182 15) y=(106 17,168 17) z=(322 41,936 41)
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
MATHEMATICS8 xy=(106 17−49 15,168 17−182 15)=(757 255,−574 255) yz=(322 41−106 17,936 41−168 17)=(1128 697,9024 697) 757 255÷1128 697=1.8343 −574 255÷9024 697=−0.1739 Since1.8343≠−0.1739, the points x,y, and z don’t lie on a straight line. Part e A(3,14),C(9,32),D(0,0),F(14,0) GradientAC=32−14 9−3=3 y−14 x−3=3 y−14=3(x−3) AC:y=3x+5 GradientDF=0−0 14−0=0 y−0 x−0=0 DF:y=0
MATHEMATICS9 Gradientxz= 936 41−182 15 322 41−49 15 =506 217 y−182 15 x−49 15 =506 217 y−182 15=506 217(x−49 15) xz:y=506 217x+140 31 Lines AC and DF meet wheny=3x+5=0 3x+5=0 x=−5 3 Lines AC and DF meet at(−5 3,0). Substituting the point into the equation of line xz we get: 0≠506 217(−5 3)+140 31≠−410 651 Since(−5 3,0)is not a solution to the line xz, the lines do not meet at the same point. Part f
MATHEMATICS10 “Pappus’s Hexagon Theorem states that given two sets of collinear points A, B, C and D, E, F the intersection points X, Y, Z of the line pairs AE and BD, AF and CD, and CE and BF lie on the Pappus line hence collinear(Bogomolny, 2018). To prove the theorem, we need to test whether the line pairs A, B, C and D, E, F are collinear. However, since they the points D, E, F are not collinear we can adjust their coordinates to make them lie on a straight line before proving the theorem(Wolfram, 2007). Question 2 DayPages LeftPages Read 0P(to solve)0 1p−(1 5p+12)=4 5p−121 5p+12 2 (4 5p−12)−(1 5p+12)=3 5p−241 4(4 5p−12)+15=1 5p+12 3 (3 5p−24)−(1 5p+10)=2 5p−341 3(3 5p−24)+18=1 5p+10 2 5p−34=14 2 5p=34+14=48 p=48×5 2=120pages Therefore, the book had 120 pages. Question 3
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
MATHEMATICS11 Let the total number of cakes be x. Each of them eatsx 3cakes. Similarly, let the total amount of money be y. Each of them needs to take a third of the total amount. That isy 3dollars. Therefore, Sylvia should give themy 3dollars each where y is the total amount of money she has. Question 4 Let the distance between point A and B be x kilometers. Timetaken¿A¿B=Distance Speed=x 60 Timetaken¿B¿A=Distance Speed=x 90 Totaldistancecovered=x+x=2xkilometers Totaltimetravelled=x 60+x 90=90x+60x 5400=150x 5400=x 36hours Averagespeed=Totaldistancecovered Totaltimetravelled=2xkilometers x 36hours =2x×36 x=72kmh−1 Question 5 xy=1 3 y=3x 2(x−y)2 2(x+y)2=2(x−3x)2 2(x+3x)2=2(−2x)2 2(4x)2=24x2 216x2
MATHEMATICS12 ¿24×2x2 216×2x2=24 216=24−16=2−12=1 4096 Question 6 To test whether it is a “selfie fraction”, we perform the following operations 2019 5384=201+9 538+4=210 542=0.38745 2019 5384=201−9 538−4=192 534=0.35955 since0.38745≠0.35955,2019 5384is not a “selfie fraction”
MATHEMATICS13 References Bogomolny,A. (2018). Pappus' Theorem. Retrieved from https://www.cut-the-knot.org/pythagoras/Pappus.shtml Wolfram. (2007, December 1). Pappus's Hexagon Theorem -- from Wolfram MathWorld. Retrieved fromhttp://mathworld.wolfram.com/PappussHexagonTheorem.html