MCR3U MATHS Chapter 4 Test Solution - Complete Answers

Verified

Added on  2022/09/09

|11
|348
|20
Homework Assignment
AI Summary
This document presents a complete solution to a MATHS homework assignment, specifically a Chapter 4 test from the MCR3U course. The solution addresses a variety of problems, including simplifying expressions with exponents, evaluating expressions, solving exponential equations, describing transformations of functions, modeling population growth, calculating half-life, and determining the domain, range, and asymptotes of a function. Each question is answered with detailed steps, explanations, and relevant mathematical principles. The document utilizes power rules, Euler's formula, and laws of indices to provide comprehensive answers. The assignment covers topics such as exponents, functions, and their transformations, exponential growth and decay, and the analysis of functions including their domains, ranges, and asymptotes. Reference to a textbook is also provided.
Document Page
Mathematics 1
MATHS
by [NAME]
Course
Professor’s Name
Institution
Location of Institution
Date
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Mathematics 2
Question 1
a) 4
y5
Written in power form;
[ [ y5 ] 1
2 ] 1
4
Applying power rules;
y5 × 1
2 × 1
4
¿ y
5
8
b) (4 x5 y2 ) ( 18 x10 y3 )
3 x3 y
¿ (4 x2 y2 ) ( 6 x10 y4 )
1
¿ ( 4 x2 y2 ) ( 6 x10 y4 )
¿ ( 2 4 x8 y2 )
c) ( 36 m6 n1
16 m2 n5 ) 3
2
¿ ( 9 m8 n4
4 )3
2
¿ ( 27 m12 n6
8 )
d) ( 54 x5 y6
6 x2 y3 ) 12
¿ ( 9 x7 y9
1 )2
Document Page
Mathematics 3
¿ 9 x14 y18
Question 2
a) (81 )
1
4
Assume that 81=a+bi where i= 1
Plotting polar coordinates we find that;
a=r cos θ
b=r sin θ
Therefore, a+ bi=r (cos θ+isin θ)
Using Euler’s formula;
cos θ+ isin θ=e
Therefore, a+ bi=r e 81=r e
So if r =81then e=1
For e=1 thenθ= ( 2 k1 ) π wherek =1,2,3,4 .
Assume that ¿
Therefore, α4 =81 ei ( 2 k1 ) π
α2=± 9 e
i ( 2 k1 ) π
2
¿
¿
α =± 3 e
i ( 2 k1 ) π
4
¿
α=± i 3 e
i ( 2k1 ) π
4
¿
¿
¿
Going back to Euler’s method
α =± 3 ¿
Starting with the positive value first, α = (3 (± 2
2 )+ ± 2
2 )=1.5 2+1.5i 2
Document Page
Mathematics 4
For negative value, α = ( 1.5 2+1.5 i 2 )
For α =± i3 e
i (2 k1 ) π
4
¿
¿
Starting with the positive value first, α =1.5 2+1.5 i 2
For negative value, α = ( 1.5 21.5 i 2 )
Therefore (81 )
1
4 has four possible values .
1.5 2+1.5 i 2
( 1.5 2+1.5i 2 )
1.5 2+ 1.5i 2
( 1.5 21.5 i 2 )
b) ( 16
49 )
1.5
¿ 1
( 16
49 ) 3
2
= ( 49
16 ) 3
2
This is like finding the square root then cubing the result.
¿ ( 7
4 )
3
¿ ( 343
64 )
c) 57 × ( 52 ) 4
53
¿ 57 ×58
53 According to the law of indices,
¿ 57+ 8
53 = 51
53 =54
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Mathematics 5
¿ 625
Question 3
a) 3x= 1
243
Factorizing the denominator,
3x= 1
35
3x=35
Because both are in base 3
x=5
b) 322+2 x=42 x
Factorization to base 2
25 (2+ 2 x)=22 (2 x)
Equating the indices
10+10 x=4 x
10=14 x
x=10
14
x=5
7
Question 4
g ( x )=0.4 ( 60.5 x7 )1 is the transformation for f ( x )=6x
Document Page
Mathematics 6
The stretch factor 0.4 leads to a compression of the curve and a vertical reflection. The curve
also shifts down vertically by 1 step thus moving the horizontal asymptote to y=1.
Additionally, another compression factor of -0.5 leads to a horizontal reflection while the
horizontal shift of -7 leads to a shift to the right by 7 units.
Question 5
a) The population doubles in 2 hours. This implies that the population increases by 50%
after every hour. Taking the initial population as a and time as t, we can find the equation
at t hours as;
P ( t ) =120 (2
t
2 )
b) After 210 minutes
210 minutes=3.5 hours
Therefore;
P ( t ) =120 ( 2
3.5
2 )
¿ 403.63
But since cells can only be in whole numbers, total number after 210 minutes
¿ 404
Question 6
Sodium-24 has a half-life of 15 hours.
f ( x )=a ( 1
2 ) x
H
a) a=4 g , x=30 hoursH =15 hours
f ( x ) =4 ( 1
2 ) 30
15
Document Page
Mathematics 7
¿ 4 ( 1
2 )
2
=4 × 0.25
¿ 1 g
b) After 7.5 hours
f ( x ) =4 ( 1
2 ) 7.5
15
¿ 4 ( 1
2 )
0.5
=4 × 0.70711
¿ 2.828 g
To the nearest 10th of a gram
¿ 2.8 g
c) Decay to 0.5g
0.5=4 ( 1
2 ) x
15
0.125=( 1
2 ) x
15
log 0.125=log ( 1
2 ) x
15
log 0.125= x
15 log 0.5
0.903089987= x
15 (0.301029995)
3= x
15
x=45 hours
Question 7
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Mathematics 8
f ( x ) =abx
Where b=1+r
Therefore,
f ( x )=a(1+r )x
Where;
f ( x)=final population
a=initial population
r =percentage growthrate
Therefore,
19000=12600 ( 1+r )12
1.507936508= ( 1+r ) 12
12
1.507936508=1+ r
1.034821=1+r
r =0.034821
Question 8
f ( x ) =2 ( 4 ) x+35
a) Domain and range
Domain is all real numbers.
Range: f ( x ) R where f ( x ) 5
b) y-intercept
Substitute x with 0.
2 ( 4 )35=123
Document Page
Mathematics 9
c) asymptotes
Vertical asymptote: none
Horizontal asymptote: none
This is because the degree of the numerator is not equal to the degree of the denominator.
d) Sketch
Document Page
Mathematics 10
Reference
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Mathematics 11
Bird J. Engineering mathematics. 7th ed. Oxford: Routledge; 2010.
chevron_up_icon
1 out of 11
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]