Mathematics Assignment

Verified

Added on Β 2023/03/17

|7
|957
|64
AI Summary
This is a solved mathematics assignment that covers topics like amplitude, period, maximum and minimum values, wave equation, rate of change, and tangent equation.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Mathematics Assignment
Student Name:
Instructor Name:
Course Number:
7th May 2019

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
1 a) 4sin(1
2Ο€(t-1))-1
Suppose f (t) =Asin[𝐡(𝑑 + 𝐢)] +D then
A=Amplitude and period=2πœ‹
𝐡
Hence amplitude = 4
b) Period=
2πœ‹
𝐡 = 2πœ‹
πœ‹
2
= 4
Period= 4
c) For f(t) to be either minimum or maximum then
rate of change of f(t) will be 0 i.e
𝑑
𝑑π‘₯ (f(t)= f '(t)=0
𝑑
𝑑π‘₯ (f(t)= 𝑑
𝑑π‘₯ [4 sin (
1
2 πœ‹(𝑑 βˆ’ 1)) βˆ’ 1]=0
= 2Ο€ cos(1
2 πœ‹(𝑑 βˆ’ 1))=0
Either 2Ο€=0 or cos(1
2 πœ‹(𝑑 βˆ’ 1))=0
Taking cos(1
2 πœ‹(𝑑 βˆ’ 1))=0
cosβˆ’1 0 = πœ‹
2 ,3πœ‹
2
(1
2 πœ‹(𝑑 βˆ’ 1))=πœ‹
2 ,3πœ‹
2
1
2 πœ‹(𝑑 βˆ’ 1) =πœ‹
2 , (𝑑 βˆ’ 1) =1, t=2
or 1
2 πœ‹(𝑑 βˆ’ 1) =3πœ‹
2 ,(𝑑 βˆ’ 1) =3, t=4
When t=2
Document Page
When t=2 f(t) is maximum
f(t)= 4sin(1
2Ο€(t-1))-1
f(2)= 4sin(1
2Ο€(2-1))-1 f(2)= 4sin(1
2Ο€(2-1))-1
=4sin(1
2Ο€)-1 =4(1)-1=3
maximum value of f(t) =3
when t=4
When t=4 f(t) is minimum
f(t)= 4sin(1
2Ο€(t-1))-1
f(4)= 4sin(1
2Ο€(4-1))-1 f(4)= 4sin(1
2Ο€(4-1))-1
f(4)= 4sin(3
2Ο€)-1= 4(-1)-1=-5
minimum value of f(t) =-5
t 1 2 3
f β€²(t)
2Ο€ 0 -2Ο€
sign
positive zero negative
t 3 2 3
f β€²(t)
-2Ο€ 0 2Ο€
sign
positive zero negative
Document Page
d) 4sin(
1
2Ο€(t-1))-1
2 wave equation is given by y=Asin(kx-wt+d)
A2= 𝐼
2πœ‹2𝐷𝑓𝑣 where I=Intensity
D=Density of air
A=amplitude
K=wave number
f=frequency
v=velocity of sound in air
w=angular velocity
d=constant
𝐴2 = 60
2(1.225)(50)(340)πœ‹2
A=0.012m
t -1 0 1 2 3
f(t)= 4sin(1
2Ο€(t-1))-1 -1 -5 -1 3 -1
-6
-4
-2
0
2
4
-2 -1 0 1 2 3 4
f(t)
Time t
A graph of f(t) against time (t)

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
𝐾 = 2πœ‹
π‘€π‘Žπ‘£π‘’π‘™π‘’π‘›π‘”π‘‘β„Ž
= 2πœ‹(50)
340 = 0.924
π‘Š = 2πœ‹π‘“ = 2πœ‹(50) = 314.2
At t=0, d=0 hence wave equation is y=0.012sin(0.924x-314.2t)
3 From first principle we get that given y=f(x), then the derivative
or the rate of change of this function y with respect to x is given by
𝑑𝑦
𝑑π‘₯ = lim
𝛿π‘₯ β†’ 0
𝑓(π‘₯+𝛿π‘₯)βˆ’π‘“(π‘₯)
𝛿π‘₯
Given that V=5t(2-t)=10t-5t2
V+ 𝛿𝑉=10(t+ 𝛿𝑑)-5(t+ 𝛿𝑑)2
V+ 𝛿𝑉=10t+10𝛿𝑑 βˆ’ 5(𝑑2 + 2𝑑𝛿𝑑 + (𝛿𝑑)2)
V+ 𝛿𝑉=10t+10𝛿𝑑 βˆ’ 5𝑑2 βˆ’ 10𝑑𝛿𝑑 βˆ’ 5(𝛿𝑑)2
But V=10t-5t2 hence we shall have
𝛿𝑉=10𝛿𝑑 βˆ’ 10𝑑𝛿𝑑 βˆ’ 5(𝛿𝑑)2
t 0 0.005 0.01 0.015 0.02 0.025 0.003 0.035 0.04
y 0 0.012 0 -0.012 0 0.012 0 -0.012 0
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0 0.01 0.02 0.03 0.04 0.05
y
Time t
A graph of y against time (t)
Document Page
𝛿𝑉
𝛿𝑑 =10π›Ώπ‘‘βˆ’10π‘‘π›Ώπ‘‘βˆ’5(𝛿𝑑)2
𝛿𝑑
𝛿𝑉
𝛿𝑑 =𝛿𝑑(10βˆ’10π‘‘βˆ’5𝛿𝑑)
𝛿𝑑 =(10 βˆ’ 10𝑑 βˆ’ 5𝛿𝑑)
Therefore 𝑑𝑉
𝑑𝑑 = lim
𝛿π‘₯ β†’0
(10 βˆ’ 10𝑑 βˆ’ 5𝛿𝑑)
𝑑𝑉
𝑑𝑑 =10-10t
Thus the rate of change of water 𝒅𝑽
𝒅𝒕 =10-10t
4 f(x)=x2-1
f(x) + 𝛿𝑓(π‘₯)=(x+𝛿π‘₯)2-1
f(x) + 𝛿𝑓(π‘₯)=(x2+2π‘₯𝛿π‘₯ + (𝛿π‘₯)2-1
But f(x)=x2-1 hence we shall have
𝛿𝑓(π‘₯)=2π‘₯𝛿π‘₯ + (𝛿π‘₯)2
= 𝛿𝑓(π‘₯)
𝛿π‘₯ =2π‘₯𝛿π‘₯+(𝛿π‘₯)2
𝛿π‘₯
= 𝑑
𝑑π‘₯(f(x)=f'(x)= 2π‘₯ + 𝛿π‘₯
= f'(x)= lim
𝛿π‘₯ β†’0
(2π‘₯ + 𝛿π‘₯)
= f'(x)= 2π‘₯
When x=3 , f'(3)=2(3)=6=gradient
When x=3 , f(x)=32-1=8
The tangent (straight line) passes through (3,8)
and has a gradient of 6 at x=3.
The equation of the tangent can be found as follows
π‘¦βˆ’8
π‘₯βˆ’3=6
y-8=6(x-3)
Document Page
y-8=6x-18
y=6x-10
The tangent to the graph has the equation y=6x-10
1 out of 7
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]