MAS164: Semester 1 Mathematics Assignment - Function Analysis
VerifiedAdded on 2023/03/17
|7
|957
|64
Homework Assignment
AI Summary
This document presents a comprehensive solution to a mathematics assignment focusing on trigonometric functions and wave analysis. The assignment includes several parts, starting with the analysis of a trigonometric function f(t) = -1 + 4sin(Ο(t-1)/2), where the amplitude, period, maximum, and...

Mathematics Assignment
Student Name:
Instructor Name:
Course Number:
7th May 2019
Student Name:
Instructor Name:
Course Number:
7th May 2019
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

1 a) 4sin(1
2Ο(t-1))-1
Suppose f (t) =Asin[π΅(π‘ + πΆ)] +D then
A=Amplitude and period=2π
π΅
Hence amplitude = 4
b) Period=
2π
π΅ = 2π
π
2
= 4
Period= 4
c) For f(t) to be either minimum or maximum then
rate of change of f(t) will be 0 i.e
π
ππ₯ (f(t)= f '(t)=0
π
ππ₯ (f(t)= π
ππ₯ [4 sin (
1
2 π(π‘ β 1)) β 1]=0
= 2Ο cos(1
2 π(π‘ β 1))=0
Either 2Ο=0 or cos(1
2 π(π‘ β 1))=0
Taking cos(1
2 π(π‘ β 1))=0
cosβ1 0 = π
2 ,3π
2
(1
2 π(π‘ β 1))=π
2 ,3π
2
1
2 π(π‘ β 1) =π
2 , (π‘ β 1) =1, t=2
or 1
2 π(π‘ β 1) =3π
2 ,(π‘ β 1) =3, t=4
When t=2
2Ο(t-1))-1
Suppose f (t) =Asin[π΅(π‘ + πΆ)] +D then
A=Amplitude and period=2π
π΅
Hence amplitude = 4
b) Period=
2π
π΅ = 2π
π
2
= 4
Period= 4
c) For f(t) to be either minimum or maximum then
rate of change of f(t) will be 0 i.e
π
ππ₯ (f(t)= f '(t)=0
π
ππ₯ (f(t)= π
ππ₯ [4 sin (
1
2 π(π‘ β 1)) β 1]=0
= 2Ο cos(1
2 π(π‘ β 1))=0
Either 2Ο=0 or cos(1
2 π(π‘ β 1))=0
Taking cos(1
2 π(π‘ β 1))=0
cosβ1 0 = π
2 ,3π
2
(1
2 π(π‘ β 1))=π
2 ,3π
2
1
2 π(π‘ β 1) =π
2 , (π‘ β 1) =1, t=2
or 1
2 π(π‘ β 1) =3π
2 ,(π‘ β 1) =3, t=4
When t=2

When t=2 f(t) is maximum
f(t)= 4sin(1
2Ο(t-1))-1
f(2)= 4sin(1
2Ο(2-1))-1 f(2)= 4sin(1
2Ο(2-1))-1
=4sin(1
2Ο)-1 =4(1)-1=3
maximum value of f(t) =3
when t=4
When t=4 f(t) is minimum
f(t)= 4sin(1
2Ο(t-1))-1
f(4)= 4sin(1
2Ο(4-1))-1 f(4)= 4sin(1
2Ο(4-1))-1
f(4)= 4sin(3
2Ο)-1= 4(-1)-1=-5
minimum value of f(t) =-5
t 1 2 3
f β²(t)
2Ο 0 -2Ο
sign
positive zero negative
t 3 2 3
f β²(t)
-2Ο 0 2Ο
sign
positive zero negative
f(t)= 4sin(1
2Ο(t-1))-1
f(2)= 4sin(1
2Ο(2-1))-1 f(2)= 4sin(1
2Ο(2-1))-1
=4sin(1
2Ο)-1 =4(1)-1=3
maximum value of f(t) =3
when t=4
When t=4 f(t) is minimum
f(t)= 4sin(1
2Ο(t-1))-1
f(4)= 4sin(1
2Ο(4-1))-1 f(4)= 4sin(1
2Ο(4-1))-1
f(4)= 4sin(3
2Ο)-1= 4(-1)-1=-5
minimum value of f(t) =-5
t 1 2 3
f β²(t)
2Ο 0 -2Ο
sign
positive zero negative
t 3 2 3
f β²(t)
-2Ο 0 2Ο
sign
positive zero negative
β This is a preview!β
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

d) 4sin(
1
2Ο(t-1))-1
2 wave equation is given by y=Asin(kx-wt+d)
A2= πΌ
2π2π·ππ£ where I=Intensity
D=Density of air
A=amplitude
K=wave number
f=frequency
v=velocity of sound in air
w=angular velocity
d=constant
π΄2 = 60
2(1.225)(50)(340)π2
A=0.012m
t -1 0 1 2 3
f(t)= 4sin(1
2Ο(t-1))-1 -1 -5 -1 3 -1
-6
-4
-2
0
2
4
-2 -1 0 1 2 3 4
f(t)
Time t
A graph of f(t) against time (t)
1
2Ο(t-1))-1
2 wave equation is given by y=Asin(kx-wt+d)
A2= πΌ
2π2π·ππ£ where I=Intensity
D=Density of air
A=amplitude
K=wave number
f=frequency
v=velocity of sound in air
w=angular velocity
d=constant
π΄2 = 60
2(1.225)(50)(340)π2
A=0.012m
t -1 0 1 2 3
f(t)= 4sin(1
2Ο(t-1))-1 -1 -5 -1 3 -1
-6
-4
-2
0
2
4
-2 -1 0 1 2 3 4
f(t)
Time t
A graph of f(t) against time (t)
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser

πΎ = 2π
π€ππ£ππππππ‘β
= 2π(50)
340 = 0.924
π = 2ππ = 2π(50) = 314.2
At t=0, d=0 hence wave equation is y=0.012sin(0.924x-314.2t)
3 From first principle we get that given y=f(x), then the derivative
or the rate of change of this function y with respect to x is given by
ππ¦
ππ₯ = lim
πΏπ₯ β 0
π(π₯+πΏπ₯)βπ(π₯)
πΏπ₯
Given that V=5t(2-t)=10t-5t2
V+ πΏπ=10(t+ πΏπ‘)-5(t+ πΏπ‘)2
V+ πΏπ=10t+10πΏπ‘ β 5(π‘2 + 2π‘πΏπ‘ + (πΏπ‘)2)
V+ πΏπ=10t+10πΏπ‘ β 5π‘2 β 10π‘πΏπ‘ β 5(πΏπ‘)2
But V=10t-5t2 hence we shall have
πΏπ=10πΏπ‘ β 10π‘πΏπ‘ β 5(πΏπ‘)2
t 0 0.005 0.01 0.015 0.02 0.025 0.003 0.035 0.04
y 0 0.012 0 -0.012 0 0.012 0 -0.012 0
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0 0.01 0.02 0.03 0.04 0.05
y
Time t
A graph of y against time (t)
π€ππ£ππππππ‘β
= 2π(50)
340 = 0.924
π = 2ππ = 2π(50) = 314.2
At t=0, d=0 hence wave equation is y=0.012sin(0.924x-314.2t)
3 From first principle we get that given y=f(x), then the derivative
or the rate of change of this function y with respect to x is given by
ππ¦
ππ₯ = lim
πΏπ₯ β 0
π(π₯+πΏπ₯)βπ(π₯)
πΏπ₯
Given that V=5t(2-t)=10t-5t2
V+ πΏπ=10(t+ πΏπ‘)-5(t+ πΏπ‘)2
V+ πΏπ=10t+10πΏπ‘ β 5(π‘2 + 2π‘πΏπ‘ + (πΏπ‘)2)
V+ πΏπ=10t+10πΏπ‘ β 5π‘2 β 10π‘πΏπ‘ β 5(πΏπ‘)2
But V=10t-5t2 hence we shall have
πΏπ=10πΏπ‘ β 10π‘πΏπ‘ β 5(πΏπ‘)2
t 0 0.005 0.01 0.015 0.02 0.025 0.003 0.035 0.04
y 0 0.012 0 -0.012 0 0.012 0 -0.012 0
-0.015
-0.01
-0.005
0
0.005
0.01
0.015
0 0.01 0.02 0.03 0.04 0.05
y
Time t
A graph of y against time (t)

πΏπ
πΏπ‘ =10πΏπ‘β10π‘πΏπ‘β5(πΏπ‘)2
πΏπ‘
πΏπ
πΏπ‘ =πΏπ‘(10β10π‘β5πΏπ‘)
πΏπ‘ =(10 β 10π‘ β 5πΏπ‘)
Therefore ππ
ππ‘ = lim
πΏπ₯ β0
(10 β 10π‘ β 5πΏπ‘)
ππ
ππ‘ =10-10t
Thus the rate of change of water π π½
π π =10-10t
4 f(x)=x2-1
f(x) + πΏπ(π₯)=(x+πΏπ₯)2-1
f(x) + πΏπ(π₯)=(x2+2π₯πΏπ₯ + (πΏπ₯)2-1
But f(x)=x2-1 hence we shall have
πΏπ(π₯)=2π₯πΏπ₯ + (πΏπ₯)2
= πΏπ(π₯)
πΏπ₯ =2π₯πΏπ₯+(πΏπ₯)2
πΏπ₯
= π
ππ₯(f(x)=f'(x)= 2π₯ + πΏπ₯
= f'(x)= lim
πΏπ₯ β0
(2π₯ + πΏπ₯)
= f'(x)= 2π₯
When x=3 , f'(3)=2(3)=6=gradient
When x=3 , f(x)=32-1=8
The tangent (straight line) passes through (3,8)
and has a gradient of 6 at x=3.
The equation of the tangent can be found as follows
π¦β8
π₯β3=6
y-8=6(x-3)
πΏπ‘ =10πΏπ‘β10π‘πΏπ‘β5(πΏπ‘)2
πΏπ‘
πΏπ
πΏπ‘ =πΏπ‘(10β10π‘β5πΏπ‘)
πΏπ‘ =(10 β 10π‘ β 5πΏπ‘)
Therefore ππ
ππ‘ = lim
πΏπ₯ β0
(10 β 10π‘ β 5πΏπ‘)
ππ
ππ‘ =10-10t
Thus the rate of change of water π π½
π π =10-10t
4 f(x)=x2-1
f(x) + πΏπ(π₯)=(x+πΏπ₯)2-1
f(x) + πΏπ(π₯)=(x2+2π₯πΏπ₯ + (πΏπ₯)2-1
But f(x)=x2-1 hence we shall have
πΏπ(π₯)=2π₯πΏπ₯ + (πΏπ₯)2
= πΏπ(π₯)
πΏπ₯ =2π₯πΏπ₯+(πΏπ₯)2
πΏπ₯
= π
ππ₯(f(x)=f'(x)= 2π₯ + πΏπ₯
= f'(x)= lim
πΏπ₯ β0
(2π₯ + πΏπ₯)
= f'(x)= 2π₯
When x=3 , f'(3)=2(3)=6=gradient
When x=3 , f(x)=32-1=8
The tangent (straight line) passes through (3,8)
and has a gradient of 6 at x=3.
The equation of the tangent can be found as follows
π¦β8
π₯β3=6
y-8=6(x-3)
β This is a preview!β
Do you want full access?
Subscribe today to unlock all pages.

Trusted by 1+ million students worldwide

y-8=6x-18
y=6x-10
The tangent to the graph has the equation y=6x-10
y=6x-10
The tangent to the graph has the equation y=6x-10
1 out of 7
Related Documents

Your All-in-One AI-Powered Toolkit for Academic Success.
+13062052269
info@desklib.com
Available 24*7 on WhatsApp / Email
Unlock your academic potential
Β© 2024 | Zucol Services PVT LTD | All rights reserved.