Mathematics Assignment Solution - Foundations of Mathematics, 2019

Verified

Added on  2022/11/14

|9
|746
|119
Homework Assignment
AI Summary
This document provides a comprehensive solution to a mathematics assignment. The assignment covers various topics, including finding unique solutions to equations, working with parametric and Cartesian equations, and determining normal vectors. It explores the concept of vector equations and the intersection of lines in coordinate planes. The solution also involves analyzing linear equations, identifying parallel vectors, and performing error analysis. Detailed step-by-step explanations are provided for each problem, making it a valuable resource for students studying foundations of mathematics. This assignment offers a complete understanding of the topics covered.
Document Page
Mathematics Assignment
Student Name:
Instructor Name:
Course Number:
17th July 2019
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
1. Show that e8 x+5 cos ( 20 x ) =0 has a unique solution from x=0 ¿ x= π
20
An equation is said to have a unique solution if it has only one solution at a particular point.
At x=0 ,
e8 x+5 cos (20 x )=e8(0)+5 cos ¿ ¿
¿ e0 +5 cos 0=1+5=6
At x= π
20 ,
e8 ( π
20 )
+5 cos ( 20 ) π
20 =e0.4 π +5 cos ( π ) =0.2846-5= -0.4.7154
Therefore the above equation has a unique s0lution within the given closed interval.
2 a ¿ π 1 : (x1
x2
x3
)=
( 3
1
1 )+ t
( 1
2
2 )+ p ( 3
1
3 )
Parametric equations are
x1=3+t +3 p------------------------------i
x2=1+2 t+ p………………………………..ii
x3=12t3 p -------------------------iii
From i and ii we have;
p=0.4 x10.2 x21 And t = x2 x1
3
Substituting p and t in iii
x3=12t3 p
x3=12( x2x1
3 )3 ¿ )
x3=12
3 x2 2
3 x11.2 x10.6 x23
x3=28
15 x1 19
15 x24
28
15 x1 19
15 x2x34=0
Document Page
Normal vector to π1 is (28
15 ,19
15 ,1 ¿
n1=¿ ¿(28
15 ,19
15 ,1 ¿
π2 : (x1
x2
x3
)=
( 3
3
3 )+ μ1
( 1
2
2 )+ μ2
( 3
3
1 )
Parametric equations are
x1=3+ μ1 +3 μ2------------------------------i
x2=32 μ13 μ2………………………………..ii
x3=3+2 μ1+ μ2----------------------iii
From i and ii we have;
μ1=x1x2 and μ2= 2 x1 + x2+3
3
Substituting μ1and μ2in iii
x3=3+2 μ1+ μ2
x3=3+2 ( x1x2 ) +( 2 x1 + x2 +3
3 )
4
3 x1 5
3 x2x3+ 4=0
4
3 x1 5
3 x2x3+ 4=0
Normal vector to π2 is (4
3 ,5
3 ,1 ¿
n2=¿ ¿ (4
3 ,5
3 ,1 ¿
b) The Cartesian equation for π1can be found by eliminating the parameters s and t from the
parametric equations.
π1 : ( x1
x2
x3
)=
( 3
1
1 )+ t
( 1
2
2 )+ p ( 3
1
3 )
Parametric equations are
Document Page
x1=3+t +3 p------------------------------i
x2=1+2 t+ p………………………………..ii
x3=12t3 p -------------------------iii
From i and ii we have;
p=0.4 x10.2 x21 And t = x2 x1
3
Substituting p and t in iii
x3=12t3 p
x3=12( x2x1
3 )3 ¿ )
x3=12
3 x2 2
3 x11.2 x10.6 x23
x3=28
15 x1 19
15 x24
28
15 x1 19
15 x2x34=0
The Cartesian equation for π1 is 28
15 x1 19
15 x2x34=0
The Cartesian equation for π2can be found by eliminating the parametersμ1 and μ2from the
parametric equations.
π2 : ( x1
x2
x3
)=
( 3
3
3 )+ μ1
( 1
2
2 )+ μ2
( 3
3
1 )
Parametric equations are
x1=3+ μ1 +3 μ2------------------------------i
x2=32 μ13 μ2………………………………..ii
x3=3+2 μ1+ μ2----------------------iii
From i and ii we have;
μ1=x1x2 And μ2= 2 x1 + x2+3
3
Substituting μ1and μ2in iii
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
x3=3+2 μ1+ μ2
x3=3+2 ( x1x2 ) +( 2 x1 + x2 +3
3 )
4
3 x1 5
3 x2x3+ 4=0
4
3 x1 5
3 x2x3+ 4=0
The Cartesian equation for π2 is 4
3 x1 5
3 x2x3+4=0
c) Let x1=w
π1 : ( w
x2
x3 )=
( 3
1
1 )+ t
( 1
2
2 )+ p ( 3
1
3 )
Let x1=w
Parametric equations are
w=3+t +3 p------------------------------i
x2=1+2 t+ p………………………………..ii
x3=12t3 p -------------------------iii
From i and ii we have;
p=0.4 w0.2 x2 1 And t = x2 w
3
Substituting p and t in iii
x3=12t3 p
x3=12( x2w
3 )3 ¿ )
x3=12
3 x2 2
3 w1.2 w0.6 x23
x3=28
15 w 19
15 x24
28
15 w 19
15 x2x34=0
Document Page
The Cartesian equation for π1 is 28
15 w 19
15 x2x34=0
Let x1=w
π2 : ( w
x2
x3 )=
( 3
3
3 )+ μ1
( 1
2
2 )+ μ2
( 3
3
1 )
Parametric equations are
w=3+ μ1 +3 μ2------------------------------i
x2=32 μ13 μ2………………………………..ii
x3=3+2 μ1+ μ2----------------------iii
From i and ii we have;
μ1=wx2 And μ2= 2 w+ x2+ 3
3
Substituting μ1and μ2in iii
x3=3+2 μ1+ μ2
x3=3+2 (wx2 ) +( 2 w+ x2 +3
3 )
4
3 w 5
3 x2x3 +4=0
4
3 w 5
3 x2x3 +4=0
The Cartesian equation for π1 is 28
15 w 19
15 x2x34=0…………………………………..k
The Cartesian equation for π2 is 4
3 w 5
3 x2x3 +4=0………………………………..m
From k the value of w=15
28 (19
15 x2 +x3 +4 )=19
28 x2 15
28 x3 15
7
From m the value of w= 3
4 ( 5
3 x2 x3 4 ) =5
3 x2 3
4 x3 3
Hence 19
28 x2 15
28 x3 15
7 =5
3 x2 3
4 x33
Document Page
= 19
28 x2 15
28 x3 15
7 + 5
3 x2 + 3
4 x3+3=0
83
84 x2 + 3
14 x3 + 6
7 =0
Parametric vector equation of L is 83
84 j+ 3
14 k + 6
7 =0
d)
N1=¿¿(28
15 ,19
15 ,1 ¿
N2=¿¿ (4
3 ,5
3 ,1 ¿
Let s=N1 × N2
s= N1 × N2=
| i j k
28
15 19
15 1
4
3 5
3 1 |=2
5 i+ 8
15 j64
45 k
4
3 w 5
3 x2x3 +4=0 ……………………………………….iv
28
15 w 19
15 x2x34=0………………………………………….v
Suppose the point (w, x2, 0) is the intersection line and the xy co-ordinate plane. By substituting
x3=0 in iv and v above we have
4
3 w 5
3 x2 +4=0 ……………………………………….iv
28
15 w 19
15 x24=0………………………………………….v
Solving the two equations simultaneously we get
w= -8.25 , x2=¿9
(w,x2,0)= (-8.25,9, 0)
The equation of the line of intersection L is
w+8.25
2
5
= x29
8
15
= x3
64
45
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
π2 : (x1
x2
x3
)=
( 3
3
3 )+ μ1
( 1
2
2 )+ μ2
( 3
3
1 )
Parametric equations are
x1=3+ μ1 +3 μ2------------------------------i
x2=32 μ13 μ2………………………………..ii
x3=3+2 μ1+ μ2----------------------iii
The Cartesian equation for π1 is 28
15 x1 19
15 x2x34=0
= 28
15 ( 3+μ1 +3 μ2 ) 19
15 ( 32 μ13 μ2 ) (3+2 μ1+μ2 )4=0
=28
5 28
15 μ1 28
5 μ2+ 19
5 + 38
15 μ1+ 19
5 μ232 μ1μ24=0
= - 4
3 μ1 4
5 μ2 44
5 =0
Parametric vector equation is - 4
3 μ1 i 4
5 μ2 j 44
5 =0
e) The two equation actually represent the same line.
f) n1=¿ ¿(28
15 ,19
15 ,1 ¿
n2=¿ ¿ (4
3 ,5
3 ,1 ¿
m=n1 × n2
m=n1× n2=
| i j k
28
15 19
15 1
4
3 5
3 1 |=2
5 i+ 8
15 j64
45 k
m=2
5 i+ 8
15 j64
45 k…………………………………..q
83
84 j+ 3
14 k + 6
7 =0 …………………………………r (from part c)
Document Page
- 4
3 μ1 i 4
5 μ2 j 44
5 =0 ……………………………..s (from part d)
Comparing q and r i.e.
2
5 i+ 8
15 j64
45 k=g( 83
84 j+ 3
14 k + 6
7 ¿where g is a scalar.
It is clearly evident that q isn’t a scalar multiple of r hence the two vectors aren’t parallel.
Comparing q and s i.e.
2
5 i+ 8
15 j64
45 k=h( 4
3 μ1 i 4
5 μ2 j 44
5 )where h is a scalar.
It is clearly evident that q isn’t a scalar multiple of s hence the two vectors aren’t parallel.
g) For vectors to be parallel then one must be a scalar multiple of the other.
3. Let f= ( 16.022 ¿ ¿
3
4 , f 1=¿
16.022=16+X
X=0.022 Where X is the error
Absolute error=(0.022)
3
4 =0.057124
chevron_up_icon
1 out of 9
circle_padding
hide_on_mobile
zoom_out_icon