1. Show thate−8x+5cos(20x)=0has a unique solution fromx=0¿x=π 20 An equation is said to have a unique solution if it has only one solution at a particular point. Atx=0, e−8x+5cos(20x)=e−8(0)+5cos¿¿ ¿e0+5cos0=1+5=6 Atx=π 20, e−8(π 20) +5cos(20)π 20=e−0.4π+5cos(π)=0.2846-5= -0.4.7154 Therefore the above equation has a unique s0lution within the given closed interval. 2a¿π1:(x1 x2 x3 )= (3 1 −1)+ t (1 2 −2)+p(3 1 −3) Parametric equations are x1=3+t+3p------------------------------i x2=1+2t+p………………………………..ii x3=−1−2t−3p-------------------------iii From i and ii we have; p=0.4x1−0.2x2−1And t =x2−x1 3 Substituting p and t in iii x3=−1−2t−3p x3=−1−2(x2−x1 3)−3¿) x3=−1−2 3x2−2 3x1−1.2x1−0.6x2−3 x3=−28 15x1−19 15x2−4 −28 15x1−19 15x2−x3−4=0
Normal vector toπ1is (−28 15,−19 15,−1¿ n1=¿¿(−28 15,−19 15,−1¿ π2:(x1 x2 x3 )= (3 −3 3)+μ1 (1 −2 2)+μ2 (3 −3 1) Parametric equations are x1=3+μ1+3μ2------------------------------i x2=−3−2μ1−3μ2………………………………..ii x3=3+2μ1+μ2----------------------iii From i and ii we have; μ1=−x1−x2andμ2=2x1+x2+3 3 Substitutingμ1andμ2in iii x3=3+2μ1+μ2 x3=3+2(−x1−x2)+(2x1+x2+3 3) −4 3x1−5 3x2−x3+4=0 −4 3x1−5 3x2−x3+4=0 Normal vector toπ2is (−4 3,−5 3,−1¿ n2=¿¿(−4 3,−5 3,−1¿ b) The Cartesian equation forπ1can be found by eliminating the parameters s and t from the parametric equations. π1:(x1 x2 x3 )= (3 1 −1)+ t (1 2 −2)+p(3 1 −3) Parametric equations are
x1=3+t+3p------------------------------i x2=1+2t+p………………………………..ii x3=−1−2t−3p-------------------------iii From i and ii we have; p=0.4x1−0.2x2−1And t =x2−x1 3 Substituting p and t in iii x3=−1−2t−3p x3=−1−2(x2−x1 3)−3¿) x3=−1−2 3x2−2 3x1−1.2x1−0.6x2−3 x3=−28 15x1−19 15x2−4 −28 15x1−19 15x2−x3−4=0 The Cartesian equation forπ1is−28 15x1−19 15x2−x3−4=0 The Cartesian equation forπ2can be found by eliminating the parametersμ1andμ2from the parametric equations. π2:(x1 x2 x3 )= (3 −3 3)+μ1 (1 −2 2)+μ2 (3 −3 1) Parametric equations are x1=3+μ1+3μ2------------------------------i x2=−3−2μ1−3μ2………………………………..ii x3=3+2μ1+μ2----------------------iii From i and ii we have; μ1=−x1−x2Andμ2=2x1+x2+3 3 Substitutingμ1andμ2in iii
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
x3=3+2μ1+μ2 x3=3+2(−x1−x2)+(2x1+x2+3 3) −4 3x1−5 3x2−x3+4=0 −4 3x1−5 3x2−x3+4=0 The Cartesian equation forπ2is−4 3x1−5 3x2−x3+4=0 c)Letx1=w π1:(w x2 x3)= (3 1 −1)+ t (1 2 −2)+p(3 1 −3) Letx1=w Parametric equations are w=3+t+3p------------------------------i x2=1+2t+p………………………………..ii x3=−1−2t−3p-------------------------iii From i and ii we have; p=0.4w−0.2x2−1And t =x2−w 3 Substituting p and t in iii x3=−1−2t−3p x3=−1−2(x2−w 3)−3¿) x3=−1−2 3x2−2 3w−1.2w−0.6x2−3 x3=−28 15w−19 15x2−4 −28 15w−19 15x2−x3−4=0
The Cartesian equation forπ1is−28 15w−19 15x2−x3−4=0 Letx1=w π2:(w x2 x3)= (3 −3 3)+μ1 (1 −2 2)+μ2 (3 −3 1) Parametric equations are w=3+μ1+3μ2------------------------------i x2=−3−2μ1−3μ2………………………………..ii x3=3+2μ1+μ2----------------------iii From i and ii we have; μ1=−w−x2Andμ2=2w+x2+3 3 Substitutingμ1andμ2in iii x3=3+2μ1+μ2 x3=3+2(−w−x2)+(2w+x2+3 3) −4 3w−5 3x2−x3+4=0 −4 3w−5 3x2−x3+4=0 The Cartesian equation forπ1is−28 15w−19 15x2−x3−4=0…………………………………..k The Cartesian equation forπ2is−4 3w−5 3x2−x3+4=0………………………………..m From k the value of w=−15 28(19 15x2+x3+4)=−19 28x2−15 28x3−15 7 From m the value of w=3 4(−5 3x2−x3−4)=−5 3x2−3 4x3−3 Hence−19 28x2−15 28x3−15 7=−5 3x2−3 4x3−3
=−19 28x2−15 28x3−15 7+5 3x2+3 4x3+3=0 −83 84x2+3 14x3+6 7=0 Parametric vector equation of L is−83 84j+3 14k+6 7=0 d) N1=¿¿(−28 15,−19 15,−1¿ N2=¿¿(−4 3,−5 3,−1¿ Let s=N1×N2 s=N1×N2= |ijk −28 15−19 15−1 −4 3−5 3−1|=−2 5i+8 15j−64 45k −4 3w−5 3x2−x3+4=0……………………………………….iv −28 15w−19 15x2−x3−4=0………………………………………….v Suppose the point (w,x2,0) is the intersection line and the xy co-ordinate plane. By substituting x3=0iniv and v above we have −4 3w−5 3x2+4=0……………………………………….iv −28 15w−19 15x2−4=0………………………………………….v Solving the two equations simultaneously we get w= -8.25,x2=¿9 (w,x2,0)= (-8.25,9,0) The equation of the line of intersection L is w+8.25 −2 5 =x2−9 8 15 =x3 −64 45
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
π2:(x1 x2 x3 )= (3 −3 3)+μ1 (1 −2 2)+μ2 (3 −3 1) Parametric equations are x1=3+μ1+3μ2------------------------------i x2=−3−2μ1−3μ2………………………………..ii x3=3+2μ1+μ2----------------------iii The Cartesian equation forπ1is−28 15x1−19 15x2−x3−4=0 =−28 15(3+μ1+3μ2)−19 15(−3−2μ1−3μ2)−(3+2μ1+μ2)−4=0 =−28 5−28 15μ1−28 5μ2+19 5+38 15μ1+19 5μ2−3−2μ1−μ2−4=0 = -4 3μ1−4 5μ2−44 5=0 Parametric vector equation is -4 3μ1i−4 5μ2j−44 5=0 e) The two equation actually represent the same line. f)n1=¿¿(−28 15,−19 15,−1¿ n2=¿¿(−4 3,−5 3,−1¿ m=n1×n2 m=n1×n2= |ijk −28 15−19 15−1 −4 3−5 3−1|=−2 5i+8 15j−64 45k m=−2 5i+8 15j−64 45k…………………………………..q −83 84j+3 14k+6 7=0 …………………………………r(from part c)
-4 3μ1i−4 5μ2j−44 5=0……………………………..s(from part d) Comparing q and r i.e. −2 5i+8 15j−64 45k=g(−83 84j+3 14k+6 7¿where g is a scalar. It is clearly evident thatq isn’t a scalar multiple of r hence the two vectors aren’t parallel. Comparing q and s i.e. −2 5i+8 15j−64 45k=h(4 3μ1i−4 5μ2j−44 5)where h is a scalar. It is clearly evident thatq isn’t a scalar multiple of s hence the two vectors aren’t parallel. g) For vectors to be parallel then one must be a scalar multiple of the other. 3. Let f= (16.022¿¿ 3 4,f1=¿ 16.022=16+X X=0.022Where X is the error Absolute error=(0.022) 3 4=0.057124