Mathematics for Economics Mathematics for Economics
Verified
Added on 2022/10/17
|24
|1791
|310
AI Summary
Different the following function F (x) = -4+3x-1 F(x) = -4+3(2x)-1=2 F(x) =-4+3(2x)-1=2(-4+3x-1) =-16+6x-1=-8+3x-1 =-16+6x-6x-1+2 =-+1 =-( X= The value of x is or - F(2x)=f(x) =-4+3(2x)-1=-4+3
Contribute Materials
Your contribution can guide someone’s learning journey. Share your
documents today.
Mathematics for Economics
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
Table of Contents Part A...............................................................................................................................................3 Question 1....................................................................................................................................3 Question 2....................................................................................................................................3 Question 3....................................................................................................................................3 Question 4....................................................................................................................................3 Part -B..............................................................................................................................................3 Question 5....................................................................................................................................3 Question 6....................................................................................................................................3 Question 7....................................................................................................................................3 Question 8....................................................................................................................................3 2
Part A Question 1 (a). Different the following function F (x) =-4x2+3x-1 F(x) = -4x2+3x-1 F(2x)=2 F(x) =-4(2x)2+3(2x)-1=2(-4x2+3x-1) =-16x2+6x-1=-8x2+3x-1 =-16x2+8x2+6x-6x-1+2 =-8x2+1 =-(8x2−1¿ 8x2−1=0 8x2=1 x2=1 8 X=±√1 8 The value of x is√1 8or - √1 8 F(2x)=f(x) =-4(2x)2+3(2x)-1=-4x2+3x-1 =-16x2+3x-1=4x2+3x-1 =-16x2+4x2+3x-3x-1+1 =-12x2+4x2=0 =-4x(3x-1)=0 -4x=03x-4=0 3
X=03x=4x=4/3 The find the final value of the different function is x=0 and x=1 (b) g(x)=x2lnx The function g(x)=x2lnxis the from f(x)=g(x).h(x) which makes it suitable for appliance of equation is F’(x)=g’(x)h(x)+g(x)h’(x) Following value of each function, G(x)=x2 H(x)=lnx G’(x)=2x2 2 h’(x)=1 x When we substitute each of these into equation is F’(x)=2x2 2lnx+x2lnx =x2lnx+x2.1 x =x2lnx+x =x3lnx (c)h(x)= 3ex√x3+1 d dx(h(x)=3ex√x3+1 The different function equation that can follows that, d dx(h(x))=dh(u) du.du dx'=u=x d du(h(u)=h’(u) 4
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
d dx(h’(x)) =d dx(3ex√x3+1) =d dx(1+3ex√x3) =3(d dx(x 3 2).ex+x 3 2.d dx(ex)¿+0 =3(3 2x 3 2-1 .ex+ex.x 3 2¿ =3(x 3 2ex+3√xex 3) =3x 3 2ex+9√xex 3 =3√x(2x+3)ex 2 2. For function f(x) in 1a, write down the difference ratio∆f ∆x(equivalently indicated with∆f h) and show that the limit for the increment going to zero is equal to the derivative function. Formally, show thatlim h→0 ∆f h(x)=f'(x)briefly discuss the meaning of the difference ratio. 3. In a carefully drawn and labelled two-dimensional Euclidean space, draw function f(x) and its derivative, clearly indicating the coordinates of the maximisers, minimisers, maxima, minima, and the intersections with both axes, and the intersections between the two functions. Discuss the relationship between the graphs of f(x) and the graph of f’(x). Let us start by thinking about the multidimensional functions we can graph: 5
A point (a, b) is a fixed point known as the maximum, minimum, or saddle point. The true value at a fixed point is called a fixed value. We need a mathematical method to find the fixed points of the F (X, Y) function and classify them as the maximum, minimum, or saddle point. This method resembles a method that generates the first and second derivatives of the function, but is more complex. Question 2 1. We can consider the value of lottery is L={1/2,£2,000;1 2;10,000} Using the method of utility function is u:R0 +¿¿R and consider the function form is u(x)=ln(x) Expected values on the Lottery E[L]=∑L.p(L) winloss Gain(L)100002000 Probability (L)1/21/2 E[L]=∑10000.p(1 2)=5,000 E[L]=∑2000.p(1 2)=1,000 The expected value of E(L)={5000,1000} 2. 6
∫ a b ¿¿)dx ∫ a b xdx+∫ a b 1 xdx =[x 2]a b +[ln(x)]a b 3. ∫ a b ¿¿)dx ∫ a b xdx+∫ a b 1 xdx =[x 2]a b +[ln(x)]a b =12%=0.12 Question 3 F(x) =1/5 (x3+1/x+2) =1/5∫x3dx+∫1 xdx+2∫dx ∫1 5(x3+1 x+2)dx ∫x3dx=x4 4 ∫1 xdx=ln(x) 2∫dx=2x 1/5∫x3dx+∫1 xdx+2∫dx=x4 4+ ln(x)+2x+c 2 ∫1 xdx=ln(x)=15,000 7
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
2∫dx=2x 1/5∫x3dx+∫1 xdx+2∫dx=x4 4+ ln(x)+2x+c 3. =1/5∫x3dx+∫1 xdx+2∫dx=12% ∫1 5(x3+1 x+2)dx ∫x3dx=x4 4 ∫1 xdx=ln(x) 2∫dx=2x 1/5∫x3dx+∫1 xdx+2∫dx=x4 4+ ln(x)+2x+c Question 4 Consider the following function a) f(x1,x2)=3x1 2-2x1+x2 2-x1 3 =3x1 2-x1 3+x2 2−¿2x1 =x1 2(3-x1¿+x¿-2) 3-x1=0,x2-2=0 To find the two variable on the value is (-3,2) b) g(x1,x2)= 3x1 2+2−10x1−10x2-2x1x2 =x1¿)-10(x1−x2)+ 2x1x2 3x1+2x2=0x1−x2=0 8
To find the two variable on the value is (-3,-2) =-3(3x-3+2x-2)-10(-3+2)+2(-3-2) =41. c) h(x1,x2)=(x1 2−1¿(x2+1) Let as consider the two different equation is, x1 2−1=0 x2+1=0 x1 2=1 H(x1) =0.5 H(x2)=1 Two variable is (0.5,1) e) l(x1,x2)=ex1ex2 l(x1)=ex1 =∫ex1dx=xex1 x1 =∫ex2dx=xex2 x2 =xex1 x1.xex2 x2 =x2(xex1).x1 (xex2) =x2(xex1).x1(xex2) x1−x2 e) l(x1,x2)=2x1−x2 x1+2x2 l(x1)=∫2x1−x2dx =∫2x1dx−¿∫x2¿dx 9
=2x2 2-x3 3 =3x2+2x3 6.2=3x2+2x3 3 l(x1)=∫x1+2x2dx =∫x1dx+¿∫2x2¿dx =x2 2-2.x3 3 =3x2+2x3 6.2=3x2+2x3 3 =3x2+2x3 3x2+2x3=1 1.Stationary points is f(x1, x2), g(x1, x2) and h(x1, x2) x=x1 2-x 2-2x dx dy=x1-x-2 x1-x-2=0 (x-2)(x-1)=0 (2,1) X=2 2-1 2-2.1 =0.19 G(x1,x2) and h(x1, x2) of the standard points is (1,0.19) 2. Consider a function y=f(x1,x1…xn) where the x0 are all independent, so each can very the without affecting with other variables, suppose that only x1 changes then we will have the difference quotient of the increase and decrease of the gradient function is ∆y ∆x1=f(x1+∆x1,x2,……..xn) ∆x1+f(x1−∆x1,x2,……..xn) ∆x1 10
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
The gradient function on the partial derivation argument isf(x1+∆x1,x2,……..xn) ∆x1is, Fi=∆y ∆x1lim ∆xi→0 ∆y ∆x1 In order of the gradient function on the partial derivation with the respect to xi, we must x0 is the constant and then process exactly same. 3. Thestationarypoints on the function they can consist of f(x1,x2) and g(x1,x2) we can assuming the equation is F(x)=3x2-36x+36 3x2-36x+32=0 x2-12x+32=0 x2-4x-8x+32=0 (x-8)(x-4)=0 =(8,4) =±b2−√4ac 2c Now we can find the maximum and minimum standard points, F’’(x1)=g’’(x1)=6x-36=6X4-36=24-36=32 F’’(x2)=g’’(x2)=6x-36=6X8-36=48-36=13 Let as consider the f(x1,x2) and g(x1,x2) is the maximum values.at the same times f’’(x1,x2) and g’’(x1,x2) is the minimum values(32,13) Part -B Question 5 1. A=[120 4−3−1] B=[012 102] 11
a1x+b1y=c1 a2x+b2y=c2 X=Δx Δy=Dy D D=[a1b1 a2b2]=a1b2-b1a2 D=[−13 24]=-4-6=-10 D=-10 Δx=[c1b1 c2b2] Δx=[123 764]=48-228=180 Δy= [a1c1 a2c2]=[−112 276]=-76-24=-100 X=Δx Δ=180/10=18 y=Δy Δ=100/10=50 (x,y)=(18,50) 3. We can consider the following equation on the quadric matrix forms that are specified the (y1, y2) (y1, y2) = (c1+c2) + (I1 ¿+I2 ¿)+(x1+x2)-(m1+m2) The quadric equation is ax+by+cz =[0.75y1+1000.82y2+100 200300].[0.3 0.1] 13
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
X2100 A(0,10)=10 B(5,0)=10 C(2,0)=4 The cannot maximum value is not available 3) Statistics profit=£24 Economics profit=£30 Statistics printing=10 Statistics binding=5 Economic printing=12 Economic binding= 20 10x1+5x2≤20 12x1+20x2≤20 Z=24x1+36x2 10x1+5x2≤20 X102 X240 12x1+20x2≤20 X101.6 X210 Z=24x1+36x2 A(0,1)=36 B(2,0)=24 X1=0, x2=1 maximum optimum=36 Question 8 17
Find indefinite integral of F(x)=(x+1) ∫(x+1)dx=x2 2+c ∫(x+1)dx=∫f(x)dx±∫g(x)dx F(x)dx=∫xdx+∫1dx ∫(x+1)dx=x2 2+x+c We can add the indefinite constants is, ∫(x+1)dx=x2 2+x+c F(x)=x2+x =∫(x2+x)dx ∫(x2+x¿)dx=∫x2dx+∫xdx =x3 3+x2 2 =x2(2x+3) 6 We can add the constant values function =x2(2x+3) 6+c F(x) =1/5 (x3+1/x+2) =1/5∫x3dx+∫1 xdx+2∫dx ∫1 5(x3+1 x+2)dx ∫x3dx=x4 4 ∫1 xdx=ln(x) 18
2∫dx=2x 1/5∫x3dx+∫1 xdx+2∫dx=x4 4+ ln(x)+2x+c Let as consider the constant final value is, x4 4+ ln(x)+2x+c Find the definite integral of ∫ 0 2 ¿¿+1) dx We can apply the equation is F(x)±g(x)dx=∫f(x)dx±∫g(x)dx ∫ 0 2 ¿¿+∫ 0 2 1dx [x3 3]0 2 +[x]0 2 [23 3-0 3]+[2-0]=14 3 ii) ∫ a b ¿¿)dx ∫ a b xdx+∫ a b 1 xdx =[x 2]a b +[ln(x)]a b =[b2 2-a2 2]+[ln(b)−ln(a)¿ ∫ a b ¿¿)dx=[b2 2-a2 2]+[ln(b)−ln(a)¿ iii. 19
Secure Best Marks with AI Grader
Need help grading? Try our AI Grader for instant feedback on your assignments.
∫ −1 1 (7x+2)dx ∫ −1 1 7xdx+∫ −1 1 2dx 7[x2 2]−1 1 +[x]−1 1 =7(0)-2(2)=4 2) Marginal cost function Mc=2Q+6 Total cost=212 Q=6 To find total cost functions is q=8 Mc=2Q+6 Mc=F(q)=2q+6 Tc(q)=∫(2q+6)dq =∫2qdq+6∫dq =2q2 2+6q+F F is the constant value of integration Q=6 =2x(6)2 2+6x6+212 =284 F is the constant value of integration Q=8 2x(8)2 2+6x8+212=324 3) 20
pD=-QD 2 2-2qd+34 ps=Qs 2-Qs+6 To be calculate the consumer and procedure surplus The producer’s surplus is defined as the definite integral ps=∫ 0 xi ¿¿)dx The consumer surplus is defined pD=∫ 0 xi (D(xi)−¿pe)dx¿ Find [pe,xe]pD=ps QD 2 2-2qd+34=Qs 2-Qs+6 -68QD 2=10Qs xe=34 5 D(xe¿=pe=−(34 5) 2 -2(34 5¿+34=51 Consumer surplus cs=∫ 0 34 5−QD 2 2−2qd+34−51dx ps=∫ 0 34 5−QD 2 2−2qd−17dx ps=∫ 0 34 5 51−Qs 2−Qs+6dx ps=∫ 0 34 5 Qs 2−Qs−59dx 21
22
Paraphrase This Document
Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser