Mathematics for Economics Mathematics for Economics

Verified

Added on  2022/10/17

|24
|1791
|310
AI Summary
Different the following function F (x) = -4+3x-1 F(x) = -4+3(2x)-1=2 F(x) =-4+3(2x)-1=2(-4+3x-1) =-16+6x-1=-8+3x-1 =-16+6x-6x-1+2 =-+1 =-( X= The value of x is or - F(2x)=f(x) =-4+3(2x)-1=-4+3

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
Mathematics for Economics

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Table of Contents
Part A...............................................................................................................................................3
Question 1....................................................................................................................................3
Question 2....................................................................................................................................3
Question 3....................................................................................................................................3
Question 4....................................................................................................................................3
Part -B..............................................................................................................................................3
Question 5....................................................................................................................................3
Question 6....................................................................................................................................3
Question 7....................................................................................................................................3
Question 8....................................................................................................................................3
2
Document Page
Part A
Question 1
(a). Different the following function F (x) = -4x2+3x-1
F(x) = -4 x2+3x-1
F(2x)=2 F(x)
=-4 (2 x)2+3(2x)-1=2(-4 x2+3x-1)
=-16x2+6x-1=-8x2+3x-1
=-16 x2+8 x2+6x-6x-1+2
=-8 x2+1
=-( 8 x21 ¿
8 x21=0
8 x2=1
x2= 1
8
X= ± 1
8
The value of x is 1
8 or -
1
8
F(2x)=f(x)
=-4 (2 x)2+3(2x)-1=-4 x2+3x-1
=-16x2+3x-1=4x2+3x-1
=-16 x2+4 x2+3x-3x-1+1
=- 12 x2+4x2=0
=-4x(3x-1)=0
-4x=0 3x-4=0
3
Document Page
X=0 3x=4 x=4/3
The find the final value of the different function is x=0 and x=1
(b) g(x)=x2 ln x
The function g(x)= x2 ln x is the from f(x)=g(x).h(x) which makes it suitable for appliance of
equation is
F’(x)=g’(x)h(x)+g(x)h’(x)
Following value of each function,
G(x)=x2
H(x)= ln x
G’(x)= 2 x2
2
h’(x)= 1
x
When we substitute each of these into equation is
F’(x)= 2 x2
2 ln x + x2 ln x
= x2 ln x+ x2. 1
x
= x2 ln x + x
=x3 ln x
(c) h(x)= 3ex x3 +1
d
dx (h(x)=3ex x3+1
The different function equation that can follows that,
d
dx (h(x))= dh(u)
du . du
dx ' =u=x
d
du (h(u)=h’(u)
4

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
d
dx (h’(x)) = d
dx (3ex x3+1)
= d
dx (1+3ex x3)
=3( d
dx (x
3
2).ex+x
3
2 . d
dx (ex)¿+0
=3( 3
2 x
3
2-1 .ex +e x . x
3
2 ¿
=3(x
3
2 e x+ 3 x ex
3 )
=3x
3
2 e x+ 9 x ex
3
= 3 x (2 x+3)ex
2
2. For function f(x) in 1a, write down the difference ratio f
x (equivalently indicated with f
h )
and show that the limit for the increment going to zero is equal to the derivative function.
Formally, show that lim
h 0
f
h ( x )=f ' (x ) briefly discuss the meaning of the difference ratio.
3. In a carefully drawn and labelled two-dimensional Euclidean space, draw function f(x) and its
derivative, clearly indicating the coordinates of the maximisers, minimisers, maxima, minima,
and the intersections with both axes, and the intersections between the two functions. Discuss the
relationship between the graphs of f(x) and the graph of f’(x).
Let us start by thinking about the multidimensional functions we can graph:
5
Document Page
A point (a, b) is a fixed point known as the maximum, minimum, or saddle point. The true value
at a fixed point is called a fixed value. We need a mathematical method to find the fixed points
of the F (X, Y) function and classify them as the maximum, minimum, or saddle point. This
method resembles a method that generates the first and second derivatives of the function, but is
more complex.
Question 2
1.
We can consider the value of lottery is L={1/2,£ 2,000 ; 1
2 ;10,000}
Using the method of utility function is u: R0
+¿ ¿R and consider the function form is u(x)=ln(x)
Expected values on the Lottery E[L]= L . p ( L )
win loss
Gain(L) 10000 2000
Probability (L) 1/2 1/2
E[L]= 10000. p( 1
2 )=5,000
E[L]= 2000. p ( 1
2 )=1,000
The expected value of E(L)={5000,1000}
2.
6
Document Page

a
b
¿ ¿)dx

a
b
xdx+
a
b
1
x dx
=[ x
2 ]a
b
+[ln ( x )]a
b
3.

a
b
¿ ¿)dx

a
b
xdx+
a
b
1
x dx
=[ x
2 ]a
b
+[ln ( x )]a
b
=12%=0.12
Question 3
F(x) =1/5 (x3+1/x+2)
=1/5 x3 dx+ 1
x dx+2 dx
1
5 (x3+ 1
x + 2)dx
x3 dx= x4
4
1
x dx=ln(x)
2 dx=2 x
1/5 x3 dx+ 1
x dx+2 dx= x4
4 + ln(x)+2 x+c
2
1
x dx=ln(x)=15,000
7

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
2 dx=2 x
1/5 x3 dx+ 1
x dx+2 dx= x4
4 + ln(x)+2 x+c
3.
=1/5 x3 dx+ 1
x dx+2 dx=12%
1
5 (x3+ 1
x + 2)dx
x3 dx= x4
4
1
x dx=ln(x)
2 dx=2 x
1/5 x3 dx+ 1
x dx+2 dx= x4
4 + ln(x)+2 x+c
Question 4
Consider the following function
a)
f(x1,x2)=3x1
2-2 x1+x2
2-x1
3
=3 x1
2- x1
3+ x2
2¿2x1
=x1
2(3- x1 ¿+x ¿-2)
3- x1=0 , x2-2=0
To find the two variable on the value is (-3,2)
b)
g(x1,x2)= 3 x1
2+210 x110 x2-2 x1 x2
= x1 ¿)-10( x1x2)+ 2 x1 x2
3 x1+2 x2=0 x1x2=0
8
Document Page
To find the two variable on the value is (-3,-2)
=-3(3x-3+2x-2)-10(-3+2)+2(-3-2)
=41.
c)
h(x1,x2)=(x1
21 ¿( x 2+1)
Let as consider the two different equation is,
x1
21=0
x 2+1=0
x1
2=1
H(x1) =0.5
H(x2)=1
Two variable is (0.5,1)
e)
l(x1,x2)=ex 1 ex 2
l(x1)=ex 1
= ex1dx= x ex 1
x 1
= ex2dx= x ex 2
x 2
= x ex 1
x 1 . x ex 2
x 2
=x2( xex 1).x1 ( x ex2)
= x 2(xex 1) . x 1( x ex 2)
x 1x 2
e)
l(x1,x2)= 2 x 1x 2
x 1+2 x 2
l(x1)=2 x 1x 2dx
=2 x 1 dx¿ x 2¿dx
9
Document Page
=2 x 2
2 - x 3
3
= 3 x 2+2 x 3
6 .2= 3 x 2+2 x 3
3
l(x1)= x 1+ 2 x 2dx
= x 1 dx+¿2 x 2 ¿dx
= x 2
2 -2. x 3
3
= 3 x 2+2 x 3
6 .2= 3 x 2+2 x 3
3
= 3 x 2+2 x 3
3 x 2+2 x 3 =1
1. Stationary points is f(x1, x2), g(x1, x2) and h(x1, x2)
x= x 1
2 - x
2 -2x
dx
dy =x1-x-2
x1-x-2=0
(x-2)(x-1)=0
(2,1)
X= 2
2- 1
2-2.1
=0.19
G(x1,x2) and h(x1, x2) of the standard points is (1,0.19)
2.
Consider a function y=f(x1,x1…xn) where the x0 are all independent, so each can very the
without affecting with other variables, suppose that only x1 changes then we will have the
difference quotient of the increase and decrease of the gradient function is
y
x 1 = f (x 1+ x 1 , x 2 , .. xn)
x 1 + f ( x 1 x 1 , x 2, .. xn)
x 1
10

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
The gradient function on the partial derivation argument is f ( x 1+ x 1 , x 2 , .. xn )
x 1 is ,
Fi= y
x 1 lim
xi 0
y
x 1
In order of the gradient function on the partial derivation with the respect to xi, we must x0 is the
constant and then process exactly same.
3.
The stationary points on the function they can consist of f(x1,x2) and g(x1,x2) we can assuming
the equation is
F(x)=3 x2-36x+36
3x2-36x+32=0
x2-12x+32=0
x2-4x-8x+32=0
(x-8)(x-4)=0
=(8,4)
= ±b2 4 ac
2 c
Now we can find the maximum and minimum standard points,
F’’(x1)=g’’(x1)=6x-36=6X4-36=24-36=32
F’’(x2)=g’’(x2)=6x-36=6X8-36=48-36=13
Let as consider the f(x1,x2) and g(x1,x2) is the maximum values.at the same times f’’(x1,x2) and
g’’(x1,x2) is the minimum values(32,13)
Part -B
Question 5
1.
A= [1 2 0
4 3 1 ]
B= [ 0 1 2
1 0 2 ]
11
Document Page
C= [0 1 2
1 1 1
3 0 1 ]
D= [1 2
5 7 ]
A+B=[ 6 6
3 3 ]
3A= [ 3 6 0
12 9 3 ]
(-1/2)B=[ 0 1 2
1 0 2 ]
BT =
[0 1
1 0
2 2 ]
AB= [ 4 1 10
3 2 2
1 0 2 ]
AC= [ 3 3 0
2 1 10 ]
Det(D)= [ 1 2
5 7 ]=17
Det(c)=
[0 1 2
1 1 1
3 0 1 ]=4
D1=[ 1 0
0 7 ]
c1=
[0 0 0
0 1 0
0 0 1 ]
2.
-x1+3x2=12
4x2+2x1=76
12
Document Page
a1x+b1y=c1
a2x+b2y=c2
X= Δ x
Δ y= Dy
D
D= [a 1 b 1
a 2 b 2 ]=a1b2-b1a2
D= [ 1 3
2 4 ]=-4-6=-10
D=-10
Δ x= [c 1 b 1
c 2 b 2 ]
Δ x= [ 12 3
76 4 ]=48-228=180
Δ y =
[a 1 c 1
a 2 c 2 ]=[1 12
2 76 ]=-76-24=-100
X= Δ x
Δ =180/10=18
y= Δ y
Δ =100/10=50
(x,y)=(18,50)
3.
We can consider the following equation on the quadric matrix forms that are specified the (y1,
y2)
(y1, y2) = (c1+c2) + (I 1
¿+ I 2
¿)+(x1+x2)-(m1+m2)
The quadric equation is ax+by+cz
=[0.75 y 1+100 0.82 y 2+100
200 300 ].[0.3
0.1 ]
13

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
=[0.75 y 1+100 X 0.3 0.75 y 1+100 X 0.1
200 X 0.3 300 X 0.1 ]
=[ 512 540
0 0 ]
=[ 0.3 0.1 ] [0.75 y 1+100 0.82 y 2+ 100
200 300 ]. [0.3
0.1 ]
X1=512 x2=540
Question 6
1.Max Q=4LK+ L2
K+2L=70
K=0
0+2L=70
2L=70
L=70/2=35
L=0
K+2X0=70
K=70
L 35 0
K 0 70
Q=4LK+L2
=4x35x70+(35)2
=9870
Maximum value.
2.
Q=100KL
Labour cost=€2,£1
14
Document Page
Contract unit=5000 units
F(q)=2x1+x2+100=5000
F’(q)= 2x1+2x2+300=5000
2x1+2x2=5000-300
2x1+2x2=4700
2(x1+x2)=4700
X1+x2=4700/2
=2650
iii).
Q=k α Lβ
C= pk
k + pL
L
f x(x,y)= (x,y)
f y(x,y)= λλ gx gy (x,y)
G(x,y)=0
Δ x= λ Δ g
Fk(k,L)= λ gk (x,y)
FL(k,L)= λ gL(x,y)
Fk(k,L)= pk
k + pL
L
= pk
k
pK + pL
L
pl
= pL ( pk
k ) +pK ( pL
L)
pK + pL
Question 7
Maximize -2x+2y
Constraints 1.5x+2y 6
x 0 y 0
x=0
1.5x+2y 6
15
Document Page
2y=6
Y= 6
2 =3
Y=0
1.5x+2X0=6
1.5x=6
X= 6
1.5=4
X 0 4
Y 3 0
A(0,3)
B(0,4)
Maximize value:-2x+2y
A(0,3)=-2x0+2x3=6
B(0,4)=-2x0+2x4=8
X=0 y=4 z(optimum )=8
2)
U(x1,X2)=x1,x2
2x1+x2 10
1/7x1+x2 2
10x1+2x2 20
X1 0, x2 0
2x1+x2 10
X1 0 5
X2 10 0
1/7x1+x2 2
X1 0 2
X2 2 0
10x1+2x2 20
X1 0 2
16

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
X2 10 0
A(0,10)=10
B(5,0)=10
C(2,0)=4
The cannot maximum value is not available
3)
Statistics profit=£24
Economics profit=£30
Statistics printing=10
Statistics binding=5
Economic printing=12
Economic binding= 20
10x1+5x2 20
12x1+20x2 20
Z=24x1+36x2
10x1+5x2 20
X1 0 2
X2 4 0
12x1+20x2 20
X1 0 1.6
X2 1 0
Z=24x1+36x2
A(0,1)=36
B(2,0)=24
X1=0, x2=1 maximum optimum=36
Question 8
17
Document Page
Find indefinite integral of
F(x)=(x+1)
( x +1 ) dx= x2
2 +c
( x +1 ) dx= f ( x ) dx ± g ( x ) dx
F(x)dx= xdx +1 dx
( x +1 ) dx= x2
2 +x+c
We can add the indefinite constants is,
( x +1 ) dx= x2
2 +x+c
F(x)=x2+x
=( x2+x )dx
( x2 + x ¿ ) dx= x2 dx+ xdx
= x3
3 + x2
2
= x2 (2 x +3)
6
We can add the constant values function
= x2 (2 x +3)
6 +c
F(x) =1/5 ( x3+1/x+2)
=1/5 x3 dx+ 1
x dx+2 dx
1
5 (x3+ 1
x + 2)dx
x3 dx= x4
4
1
x dx=ln(x)
18
Document Page
2 dx=2 x
1/5 x3 dx+ 1
x dx+2 dx= x4
4 + ln(x)+2 x+c
Let as consider the constant final value is,
x4
4 + ln(x)+ 2 x+c
Find the definite integral of

0
2
¿ ¿+1) dx
We can apply the equation is
F(x)±g(x)dx= f ( x ) dx ± g ( x ) dx

0
2
¿ ¿+
0
2
1 dx
[ x3
3 ]0
2
+[ x]0
2
[ 23
3 - 0
3 ]+[2-0]= 14
3
ii)

a
b
¿ ¿)dx

a
b
xdx+
a
b
1
x dx
=[ x
2 ]a
b
+[ln ( x )]a
b
=[ b2
2 - a2
2 ]+[ln ( b ) ln (a)¿

a
b
¿ ¿)dx=[ b2
2 - a2
2 ]+[ln ( b )ln (a)¿
iii.
19

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page

1
1
( 7 x+2 ) dx

1
1
7 xdx+
1
1
2 dx
7[ x2
2 ]1
1
+[ x]1
1
=7(0)-2(2)=4
2)
Marginal cost function
Mc=2Q+6
Total cost=212
Q=6
To find total cost functions is q=8
Mc=2Q+6
Mc=F(q)=2q+6
Tc(q)= ( 2 q+ 6 ) dq
=2 qdq+ 6 dq
= 2q2
2 +6q+F
F is the constant value of integration Q=6
= 2 x (6)2
2 +6x6+212
=284
F is the constant value of integration Q=8
2 x (8)2
2 +6x8+212=324
3)
20
Document Page
pD=- QD
2
2 -2qd+34
ps=Qs
2-Qs+6
To be calculate the consumer and procedure surplus
The producer’s surplus is defined as the definite integral
ps=
0
xi
¿ ¿)dx
The consumer surplus is defined
pD=
0
xi
(D ( xi ) ¿ pe)dx ¿
Find [ pe , xe] pD= ps
QD
2
2 -2qd+34= Qs
2-Qs+6
-68QD
2 =10 Qs
xe=34
5
D( xe ¿= pe=( 34
5 )
2
-2( 34
5 ¿ +34=51
Consumer surplus
cs=
0
34
5 QD
2
2 2 qd +3451 dx
ps=
0
34
5 QD
2
2 2 qd 17 dx
ps =
0
34
5
51Qs
2Qs+ 6 dx
ps =
0
34
5
Qs
2Qs 59 dx
21
Document Page
22

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
23
Document Page
24
1 out of 24
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]