Mathematics for Economists Assignment 2

Verified

Added on  2023/01/19

|12
|1963
|95
AI Summary
This document contains solutions for Mathematics for Economists Assignment 2. It includes questions on functions, demand function, production function, implicit function, and more. Subject: Mathematics, Course Code: N/A, Course Name: N/A, College/University: N/A
tabler-icon-diamond-filled.svg

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
MATHEMATICS FOR ECONOMISTS
ASSIGNMENT 2
[DATE]
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question 1
1.1 f ( x )=2 x5 4
3 x3 7
x +2
df ( x )
dx = d
dx (2 x5 4
3 x3 7
x +2 )
df ( x )
dx =10 x4 4 x2 + 7
x2 +0
df ( x )
dx =10 x4 4 x2 + 7
x2
1.2 z ( λ )=7 ln λ 6
λ +x5
d z ( λ )
d λ = d
d λ (7 ln λ 6
λ + x5
)
d z ( λ )
d λ = 7
λ + 6
λ2 + 0
d z ( λ )
d λ = 7
λ + 6
λ2
1.3 g ( t )=( 2
t + t5
) ( t3 +1 )
d g ( t )
d t = d
d t ( ( 2
t +t5
) ( t3 +1 ) )
d g ( t )
d t = ( t3+1 ) d
dt ( 2
t + t5
)+( 2
t + t5
) d
dt (t3 +1)
d g ( t )
d t = ( t3+1 ) ( 2
t 2 +5 t4
)+ ( 2
t +t5
) .( 3t2)
d g ( t )
d t =2 t +5 t7 2
t2 +5t4 +6t +3 t 7
1
Document Page
d g ( t )
dt =8 t7 +5 t4 2
t2 ++4 t
1.4 y ( m ) =em ( 3
m )
d y ( m )
d t = d
d t ( em ( 3
m ) )
d y ( m )
d t = ( em ) d
dt ( 3
m ) + ( 3
m ) d
dt ( em )
d y ( m )
d t =em 1
3 m
2
3
+ 3
m em
d y ( m )
d t =
( 3
m+ 1
3 m
2
3 ) em
1.5 Y = ex21
x21
dY
dx = d
dx ( ex21
x21 )
dY
dx =
( x2 1 ) d
dx ( ex21 ) ( ex21 ) d
dx ( x21 )
( x21 )
2
dY
dx = ( x2 1 ) ( 2 x . ex21 ) ex212 x
( x21 ) 2
dY
dx = ( x2 1 ) ( 2 x . ex21 )2 x ex21
( x21 )2
dY
dx = 2 x3 ex21 2 x . ex21 2 x ex21
( x2 1 )
2
dY
dx = 2 x3 ex21 4 x . ex21
( x21 )2
2
Document Page
1.6 d3 y
d x3
y=x2 +2 x3
dy
dx =2 x+ 23 x2
x3
d2 y
d x2 =2+ 3 x
2 x3
d3 y
d x3 =0 3
4 x3
d3 y
d x3 = 3
4 x3
Question 2
2.1 Function
y=f ( x )=e2 x6 x2 +16
At x = 1
dy
dx = df ( x)
dx = d
dx ( e2 x6 x2 +16 )
dy
dx = df ( x)
dx =2 e2 x12 x+ 0
Now,
d
dx ( dy
dx )= d f ( x)
dx ( 2 e2 x12 x )
d2 y
d x2 = d2 f (x )
d x2 =4 e2 x12
Now,
3
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
At x=1
d2 y
d x2 =4 e212=17.556
It can be seen that d2 y
d x2 comes out to be positive and hence, it can be said that the function is
convex.
2.2 Demand function p = 100 - 0.01 x
Cost function C(x) = 50x +10000
2.2.1 Average cost function (AC)
AC= C ( x )
x
AC= ( 50 x+10000 )
x
Average cost function ( AC ) =50+( 10000
x )
2.2.2 Profit function (π)
Revenue=xp=x(1000.01 x )=100 x 0.01 x2
Cost function C ( x )=50 x+10000
Hence,
Profit function ( π )= ( 100 x 0.01 x2 ) ( 50 x+10000 )
π=100 x0.01 x250 x10000
π=0.01 x2 +50 x 10000
4
Document Page
2.2.3 Value of x for which the profit is maximum
First derivative of profit function =0 (Maximum profit)

dx = d
dx (0.01 x2+50 x10000 ) =0.02 x+ 50
0.02 x+50=0
x= 50
0.02 =2500
x=2500
2.2.4 Maximum profit would be at x = 2500
π=0.01 x2 +50 x 10000
π=0.01 ( 2500 )2 + ( 502500 )10000
π=525,00
2.2.5 Price for this level of production
p = 100 - 0.01 x
x = 2500
p=100 ( 0.012500 )
p=75
Question 3
3.1 Production function
Q= 3
3 K2 +2 L3
Where, L=Labour ( workhours )
K=cost of capital ( $ )
Q=Daily production
5
Document Page
3.1.1 Marginal productivity of capital
dQ
dK = d
dK ( 3
3 K2 +2 L3 )
Let u=3 K 2+2 L3
f =3
u
dQ
dK = d
dK ( 3
u ) . d
dK ( 3 K2 +2 L3 )
dQ
dK = 1
3u
2
3
.6 K = 2 K
u
2
3
Now,
dQ
dK = 2 K
( 3 K2+ 2 L3 )
2
3
Marginal productivity of capital
2 K
( 3 K2+ 2 L3 )
2
3
.
Marginal productivity of labour
dQ
dL = d
dL ( 3
3 K2 +2 L3 )
Let u=3 K 2+2 L3
f =3
u
dQ
dL = d
dL ( 3
u ) . d
dL ( 3 K2+ 2 L3 )
dQ
dL = 1
3u
2
3
.6 L2= 2 L2
u
2
3
Now,
dQ
dL = 2 L2
( 3 K 2+2 L3 )
2
3
6
tabler-icon-diamond-filled.svg

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Marginal productivity of labour
2 L2
( 3 K2+ 2 L3 )
2
3
3.1.2 MRTS of productions of shoes
MRTS= Marginal productivity of labour
Marginal productivity of capital
MRTS=
2 K
( 3 K2 +2 L3 )
2
3
2 L2
( 3 K2 +2 L3 )
2
3
MRTS= 2 K( 3 K 2+2 L3 )
2
3
( 3 K 2+2 L3 )
2
32 L2
MRTS= K
L2
MRTS when labour work hours L = 8 hours per day
Cost of capital K = 4
Now,
MRTS= 4
82 =0.0625
3.2 Implicit function
x2+ y +5 y =5 x2 y2+ 4 x3
Differentiation w.r.t.x
d
dx ( x2+ y +5 y ) = d
dx ( 5 x2 y2+4 x3 )
2 x+ 1
2 y
dy
dx +5 dy
dx =5 ( 2 x y2 +2 y dy
dx x2
) ++12 x2
7
Document Page
Put dy
dx = y '
2 x+ 1
2 y y'+5 y' =5 ( 2 x y2 +2 y y' x2 ) ++12 x2
1
2 y y' +5 y'=5 ( 2 x y2+ 2 y y ' x2 ) +12 x22 x
Multiply both side with 2y
( 1
2 y y' +5 y'
) 2 y=10 y ( 2 x y2+2 y y' x2 ) +24 y x24 xy
( y y
y y' +10 y y'
) =10 y ( 2 x y2+2 y y' x2 ) +24 y x24 xy
y y' +10 y y'=20 y3 x +24 y x2 4 xy
y y' +10 y y'20 y2 x2 y ' =20 y3 x +24 y x2 4 xy
y' ( y +10 y20 y2 x2 ) =20 y3 x +24 y x24 xy
y' = 20 y3 x +24 y x2 4 xy
y +10 y 20 y2 x2
Hence,
dy
dx =20 y3 x+ 24 y x24 xy
y +10 y20 y2 x2
Slope of the tangent line at (1,0)
Slope= dy
dx =20. 03 .0+24 .1 . 024.1.0
1+10 .120 02 12 =0
Question 4
4.1 Firm spends on fixed costs = $650
MC=8216 y +1.8 y2
8
Document Page
Total cost function =?
TC=8216 y +1.8 y2 dx
TC=82 y 16 y2
2 +1.8 y3
3 +C
TC=82 y8 y2 +0.6 y3 +C
At y=0 ,TC =$ 650
650=C
Hence,
Total cost fucntion TC=82 y 8 y2+ 0.6 y3+ 65
4.2 Demand function p=6006 q0.5
Marginal revenue MR=6009 q0.5
4.2.1 Change in TR when q has increased from 2025 to 2500
¿
2025
2500
MR dq
¿
2025
2500
6009 q0.5 dq
¿ [600 q ]2025
2500 [ 9 q1.5 ]2025
2500
+ C
¿ 750000668250
¿ 81,750
4.2.2 The value of consumer surplus when q = 2500
9
tabler-icon-diamond-filled.svg

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
¿
0
2500
6006 q0.5 dq
¿ [ 600 q ]0
2500 [ 4 q1.5 ]0
2500
+C
¿ 1000000
Now,
TR=pq= p( 6006 q0.5 ) =600 q6 q1.5
TR= ( 6002500 ) ( 625001.5 )=750,000
4.3 Young’s theorem through Z=3 x3 yx y35 y2
According to Young’s theorem, Z would be a valued function defined in such a way that both
the first order partial derivatives Z(x) and Z(y) would be differentiable and then,
Z ( xy ) =Z ( yx )
Z
x =
x ( 3 x3 yx y3 5 y2 )
f ( x )= ( 9 x2 y y3 ) .. ( 1 )
Z
y =
y ( 3 x3 yx y35 y2 )
f ( y ) =3 x3 3 x y210 y2 .(2)
f ( xy ) = f ( x )
y =
y ( 9 x2 y y3 ) =9 x23 y2 ..(A )
f ( yx ) = f ( y )
x =
x ( 3 x33 x y210 y2 ) =9 x23 y2 .( B)
f ( xy ) =f ( yx )
Proved!!
10
Document Page
11
chevron_up_icon
1 out of 12
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]