Mathematics for IT

Verified

Added on  2023/06/07

|19
|2062
|361
AI Summary
This article covers topics such as trigonometric functions, coordinate geometry, complex numbers, and matrices. It includes solved problems and examples for each topic.

Contribute Materials

Your contribution can guide someone’s learning journey. Share your documents today.
Document Page
MATHEMATICS FOR IT
[Author Name(s), First M. Last, Omit Titles and Degrees]
[Institutional Affiliation(s)]

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Question One: Trigonometric Functions; Angles
(a)
(i) 7/sin 35=10/sin A
Sin A= (sin 35*10)/7
A=55
(ii) s2 =72+102
s2=49+100
s2=149
s= 149=12.21 cm
(b) For a small Ɵ, a triangle as shown below is noticed
i. With a small value of Ɵ, the opposite angle i.e. a is very small with the adjacent angle i.e. b as
well as the hypotenuse (h) being relatively large. Hence,
Sin Ɵ=a/h 0
tan Ɵ=a/b 0
Document Page
besides, it should be noticed that h and b are almost the same height with h being only slightly
longer and hence
cos Ɵ=b/h 1
bh and hence a/ha/b and thus sin Ɵtan Ɵ
ii. When the C=9;
10
sin 81 = AB
sin 9
AB= 10 sin 9
sin 81 =4.173 units
10
sin 81 = AC
sin 90
AC= 10 sin 9 0
sin 81 =10.12 units
Question 2: Applications of Trigonometric Functions
(a) Scalene triangle. Neither of the sides nor the angles is equal
(b) a2 =b2+c2-2bc cos A
=202+302-2*30*20 cos 25
a=212.4=14.57 units
(c) b
sin B = a
sin A
Document Page
30
sin B = 14.57
sin 25
sin B= 30 sin 25
14.57 =0.871
B=60.57
(d) c
sin C = a
sin A
30
sin C = 14.57
sin 25
sin C= 20sin 25
14.57 =0.581
C=35.52
(e) Area of the triangle
A= s (sa)(sb)( sc)
S=p/2= (20+30+14.57)/2=32.3
A= 32.3 (32.330)(32.320)(32.314.57)
32.3× 2.3 ×12.3 ×17.73=127.28 sq. units
Question 3: Trigonometric Functions of Real Numbers
(a)

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
(i)15
π Radians=180
15= 15× π
180 =0.8333 π
(ii) 240
π Radians =180
240= 240× π
180 =1.333 π
-425
π Radians=180
(iii)-425=425 × π
180 =-2.361π
(b) Conversion to degrees
(i) π
3
π=1800; π
3 = π
3 ×180 × 1
π =60
(ii) 5 π
8
π=1800; 5 π
8 = 5 π
8 ×180 × 1
π =112.5
Document Page
(iii) 5 π
4
π=1800; 5 π
4 =5 π
4 ×180 × 1
π =-225
Question 4: Coordinate Geometry in two dimensions
(a) y=x2 +4 x8
y=3 x2
y=y; x2+4 x8=3 x2
x2x6=0
x= 1± 5
2 =1 ± 2.236
2
x=1.6180.618
When x=1.618, y=3(1.618)-2=2.854 while when x=-0.618, y=3(-0.618)-2=-3.854. The
coordinates of intersection are thus (1.618, 2.854) and (-0.618, -3.854)
(ii) y=x2 +4 x8; y=2 x9
x2+ 4 x8=2 x9
x2+ 2 x +1=0
x= 1± 44
2 = 1± 0
2
x=0.5
Document Page
When x=0.5, y=2(0.5)-2=-1. The coordinates of intersection are thus (0.5, -1)
(b)
(i) y=x24 x +41; x2+ y2=9
y=y; x24 x+3= x2+ 9
(x24 x+3)2=±(x¿ ¿2+ 9)¿
x2x=0 ; x=1
But x2+ y2=9 ;1+ y2=9 ; y=2.828
The coordinates are (1, 2.828)
(ii) Coordinates are (1, 2.8) and (0,0)
m= y2 y1
xx1
= 2.80=2.8
10
2.8= y 2.8
x1 ; y=2.8x
Question 5: Coordinate Geometry in three dimensions
(i) Sphere
(ii)¿
¿
¿

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
Coordinates are (5, 5, -5); r= 25=5
(iii) No. The coordinates do not pass through the origin
(iv) )¿
Question 6: Complex Numbers
(a)
(i) ( 517 i ) +(1724 i)
¿ ( 517i+1724 i ) =5+1717 i24 i
¿ 2241i
(ii) ( 5
4 + 1
3 i )(2 3
5 i)
¿ 5
4 + 1
3 i2+ 3
5 i= 5
4 2+ 1
3 i+ 3
5 i
¿ 3
4 + 14
15 i
(iii) ( 27 i ) ( 5+6 i ) =10+12 i35 i42 i2
¿ 1023i+ 42=5223 i
(iv) 27 i
5+6 i . 56 i
56 i =1012i35i+ 42i2
2530 i+30 i36 i2 =3247i
61
(b) As noticed from the definition of what complex number is:
z=(x1, y1)
Document Page
w=(x2, y2) in which
z+w=(x1, y1) + (x2, y2)
=(x1+y1+x2+y2)
=(x2, y2) + (x1, y1)
=w+z
Question 7: Polar, trigonometric and exponential forms of complex numbers
(a)Converting into polar form
2+4i
Suppose z=a+ bi
The z may be written in polar form as
z=r (cos Ɵ+ i sin Ɵ)
Where r= a2 +b2Ɵ=arctan ( b
a )
For this question: z= 2+4i
Hence: a=2, b=4
Thus: r= 22+ 42=20
Document Page
And Ɵ=arctan ( 4
2 )0.46
Hence the polar form of 2+4i is approximately 4.47(cos (0.46) + i sin (0.46))
9+9i
Suppose z=a+ bi
The z may be written in polar form as
z=r (cos Ɵ+ i sin Ɵ)
Where r= a2 +b2Ɵ=arctan ( b
a )
For this question: z= 9+9i
Hence: a=9, b=9
Thus: r= 92 +92=162
And Ɵ=arctan ( 9
9 ) 0.79
Hence the polar form of 9+9i is approximately 12.73(cos (0.79) + i sin (0.79))
-7+2i
Suppose z=a+ bi
The z may be written in polar form as
z=r (cos Ɵ+ i sin Ɵ)

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Where r= a2 +b2Ɵ=arctan ( b
a )
For this question: z= -7+2i
Hence: a=-7, b=2
Thus: r= (7)2 +22= 53
And Ɵ=π arctan ( 7
2 ) 3.1421.29
Hence the polar form of -7+2i is approximately 7.28(cos (1.852) + i sin (1.852))
(b) Conversion to trigonometric form
(2 – 4𝑖)
z=a+bi=|z| (cos Ɵ)+i sin Ɵ); |z|= a2 +b2 where z=a+bi
|z|= 42+ 22=25
Ɵ=arctan ( 4
2 )0.46
2 5 ( cos 0.46 ) +¿
9+9i
z=a+bi=|z| (cos Ɵ)+i sin Ɵ); |z|= a2 +b2 where z=a+bi
|z|= 92 +92=92
Document Page
Ɵ=arctan ( 9
9 ) 0.79
9 2 ( cos 0.79 ) +¿
-7+2i
z=a+bi=|z| (cos Ɵ)+i sin Ɵ); |z|= a2 +b2 where z=a+bi
|z|= (7)2 +22=213.25
Ɵ=π arctan ( 7
2 ) 1.852
2 13.25 ( cos 1.852 ) +¿
(c) Exponential form
2+4i
= 2
4 =0.5 radians=28.6 degrees
Ɵ= 0.5
r = 22 +42=20=4.472
=4.472 e0.5 j
9+9i
= 9
9 =1 radians=57.3 degrees
Document Page
Ɵ=1
r = 92+92= 162=12.73
=12.73 e1 j
-7+2i
= 2
7 =0.286 radians=16.4 degrees
Ɵ=π1.29=1.852
r = 72+22=56=7.28
=7.28 e1.852 j
Question 8: Matrices
(a) A+C= (2 4
5 7 ) + ( 2 2
3 4 ) =( 0 6
8 11 )
(b) B-D= (11 4 15
5 6 8
3 5 2 ) (1 6 5
7 2 4
8 9 3 )= ( 10 2 10
2 4 4
5 4 1 )
(c) A.C= (2 4
5 7 )(2 2
3 4 )= ( 8 12
31 38 )
(d) B.D= (11 4 15
5 6 8
3 5 2 )× (1 6 5
7 2 4
8 9 3 )=
(159 209 116
111 114 73
54 46 41 )

Paraphrase This Document

Need a fresh take? Get an instant paraphrase of this document with our AI Paraphraser
Document Page
(e) (B+D). (B.D)= (12 10 20
12 12 12
11 14 5 )× (159 209 11 6
111 114 73
54 46 41 )=
( 4098 4568 2942
3888 4428 2760
3573 4125 2503 )
Question 9
(b) (50 30 20
70 15 15 )( A
B )=( 6
12 )
(ii) (70 30 0
30 40 30
0 30 70 )(C
E
G )=
( H
I
J )
Question 10
Document Page
( 2 5 9
1 3 7
6 8 4 )( x
y
z )=
( 37
31
8 )
AX=B
X=A-1B
The first step is to find the inverse of the matrix
Calculating the inverse of matrix A
[ 2 5 9
1 3 7
6 8 4 ]1
=
[11
3
13
3
2
3
19
6
23
6
5
12
5
6
7
6
1
12 ] [ 37
31
8 ]= [4
5
6 ]
x
y
z
= [4
5
6 ]
Question 11
(i) A

+B

=
6
2 + 4
8= 2
10
(ii) C

D

=
5
7+8
3= (3
4 )
(iii) B

× C

=( 4
8 ) × ( 5
7 ) =( 20
40 )
(iv) A

× D

=(6
2 ) × (8
3 ) =( 48
16 )
Document Page
(v) ( A

B

)( C

D

)= (6
2 4
8 )( 5
78
3 )= (10
6 )( 13
10 )=( 100
60 )
(b) Step 1: Joining the vectors head to tail
Step 2: Drawing the resultant vector from the tail of one of the vectors to the head of the other
Step 3: Should the vectors be at right angles, the magnitude of the resultant vector can be found
using Pythagoras Theorem
x= 1902 +202
=36500=191.05 m
s
Question 12
Question 13

Secure Best Marks with AI Grader

Need help grading? Try our AI Grader for instant feedback on your assignments.
Document Page
Converting complex number to exponential
-3.7997-9.25i
= 3.7997
9.25 =1.96 radians=28.6 degrees
Ɵ=1.96
r = (3.997)2 +9.2=100.05=10.002
=10.002 e1.96 j
Question 14
Denominator: (1+2i)(3-4i)(5+6i)
=(1+2i)(3-4i)=3+2i-8i2=3+2i+8
=11+2i
(11+2i) (5+6i)=55+76i+12i2=55+76i-12
=43-76i
Numerator: (7-8i)(9+10i)=63-2i-80i2=143-2i
(143-2i)(11-12i)=1573-1738i+24i2=1549-1738i
N/D=(43-76i)/(1549-1738i)
¿ (4376 i)
(15491738i) . (1549+1738i)
(1549+1738i)=198695194738i
5420045
Document Page
Question 15
(2 5 5
2 3 7
6 2 1 )(x
y
z )=
( 31
49
21 )
AX=B
X=A-1B
The first step is to find the inverse of the matrix
Calculating the inverse of matrix A
[2 5 5
2 3 7
6 2 1 ]1
=
[ 11
152
5
152
5
36
5
19
4
19
3
19
7
76
17
76
2
19 ] [ 31
49
21 ]= ( 3.5
1.1
19.8 )
( x
y
z )= ( 3.5
1.1
19.8 )
Document Page
References
AbuEloun, N. N., & Naser, S. S. A. (2017). Mathematics intelligent tutoring system
Dymond, J. H., Marsh, K. N., Wilhoit, R. C., & Frenkel, M. D. (2016). Virial Coefficients of
Mixtures (No. Virial Coefficients of Mixtures)
1 out of 19
circle_padding
hide_on_mobile
zoom_out_icon
[object Object]

Your All-in-One AI-Powered Toolkit for Academic Success.

Available 24*7 on WhatsApp / Email

[object Object]